已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.
(1)求椭圆方程.
(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.
(1);(2)详见解析.
【解析】
试题分析:(1)由过右焦点斜率为1的直线到原点的距离为可以得到右焦点坐标,即的值.再由公式可得椭圆方程.此处注意因为是右焦点,即焦点在轴上,从而得到对应的分母1即为;(2)由点坐标设出直线的点斜式方程,联立椭圆方程求出的坐标.易知直线的方程,所以易求得点坐标,由圆的性质知,则只要就有直线、重合,即三点共线.因为点的坐标已求得,可通过向量数量积予以证明.注意本题如选择求点坐标则将较为繁琐,增加了解题的计算量,这里合理利用圆的直径对应的圆周角是直角这一性质,简化了运算.
试题解析:(1)设右焦点为,则过右焦点斜率为1的直线方程为: 1分
则原点到直线的距离 3分
方程 4分
(2)点坐标为 5分
设直线方程为:,设点坐标为
得: 6分
7分 9分
10分
由圆的性质得:
又点的横坐标为 点的坐标为 11分
11分 13分
即,又三点共线 14分
考点:1.直线与圆锥曲线的位置关系;2.直线的方程;3.平面向量的应用.
科目:高中数学 来源: 题型:
x2 |
4 |
y2 |
3 |
3 |
2 |
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中数学 来源:2010年湖北省八校高三第二次联考数学(理) 题型:单选题
已知椭圆方程为,O为原点,F为右焦点,点M是椭圆右准线上(除去与轴的交点)的动点,过F作OM的垂线与以OM为直线的圆交于点N,则线段ON的长为 ( )
A. | B. | C. | D.不确定 |
查看答案和解析>>
科目:高中数学 来源:2014届福建省、二中高二上学期期末联考理科数学卷(解析版) 题型:解答题
已知椭圆方程为,左、右焦点分别是,若椭圆上的点到的距离和等于.
(Ⅰ)写出椭圆的方程和焦点坐标;
(Ⅱ)设点是椭圆的动点,求线段中点的轨迹方程;
(Ⅲ)直线过定点,且与椭圆交于不同的两点,若为锐角(为坐标原点),求直线的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com