精英家教网 > 高中数学 > 题目详情
已知函数 的导数.
(1)当时,求的单调区间和极值;
(2)设,是否存在实数,对于任意的,存在,使得成立?若存在,求出的取值范围;若不存在,说明理由.
(1)单调递减,在单调递增,极大=极小=
(2)存在符合要求

试题分析:(1)当时,
得:,                                       ……2分
所以单调递减,在单调递增,              ……4分
所以极大=极小=                          ……6分
(2)在是增函数,故对于.
.

,得.                                               ……8分
要使对于任意的,存在使得成立,只需在上,
-, 
;在
所以时,有极小值                  ……10分

因为在只有一个极小值,故的最小值为  ……12分
 解得.                                 ……14分
点评:导数是研究函数性质的主要依据,研究性质时一定不要忘记考虑函数的定义域.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数的值为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,且.则(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数在R上是单调函数,且满足对任意,都有,若则的值是(    )
A.3B.7 C.9D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,且,则的最大值为       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
一片森林原来面积为,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.
(Ⅰ)求每年砍伐面积的百分比;
(Ⅱ)到今年为止,该森林已砍伐了多少年?
(Ⅲ)今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是偶函数,它在上是减函数,且,则x的取值范围是(    )
A.(,1)B.(0,)(1,)
C.(,10)D.(0,1)(10,)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则之间的大小关系是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知在定义域上是奇函数,且在上是减函数,图像如图所示.
(1)化简:
(2)画出函数上的图像;
(3)证明:上是减函数.

查看答案和解析>>

同步练习册答案