精英家教网 > 高中数学 > 题目详情
已知f(x)=x3+bx2+cx-b(b<0)在[-1,0]和[0,2]上有相反的单调性.
(Ⅰ)求c的值;
(Ⅱ)若f(x)的图象上在两点A(m,f(m))、B(n,f(n))处的切线都与y轴垂直,且函数f(x)在区间[m,n]上存在零点,求实数b的取值范围;
(Ⅲ)若函数f(x)在[0,2]和[4,5]上有相反的单调性,在f(x)的图象上是否存在一点M,使得f(x)在点M的切线斜率为2b?若存在,求出M点坐标;若不存在,请说明理由.
分析:(I)由f(x)在[-1,0]和[0,2]上有相反的单调性,知x=0是f(x)的一个极值点,从而可得结论;
(II)确定A,B为f(x)的极值点,利用函数f(x)在区间[m,n]上存在零点,根据零点存在定理,即可求实数b的取值范围;
(III)先确定-6≤b≤-3,再假设存在点M(x0,y0)使得f(x)在M处切线斜率为2b,则f'(x0)=2b,由此可得结论.
解答:解:(Ⅰ)f'(x)=3x2+2bx+c,…(1分)
由f(x)在[-1,0]和[0,2]上有相反的单调性,
知x=0是f(x)的一个极值点.…(2分)
∴f'(0)=0,得c=0.…(3分)
(Ⅱ)令f'(x)=0,得3x2+2bx=0,∴x1=0,x2=-
2
3
b(b<0)
.…(4分)
∵f(x)的图象上在两点A(m,f(m))、B(n,f(n))处的切线都与y轴垂直,
∴A,B为f(x)的极值点.…(5分)
m=0,n=-
2
3
b(b<0)
.…(6分)
f(0)=-b,f(-
2
3
b)=
4
27
b3-b

若f(x)在[0,-
2
3
b
]上存在零点.
∵f(0)=-b>0,
f(-
2
3
b)=
4
27
b3-b≤0
.…(7分)
∵b<0,∴
4
27
b2≥1,b2
27
4
,∴b≤-
3
3
2
.…(8分)
(Ⅲ)由(Ⅱ),知由f'(x)=0,
x1=0,x2=-
2
3
b(b<0)

∵f(x)在[0,2]和[4,5]上有相反的单调性,f'(x)在[0,2]和[4,5]上有相反的符号,…(9分)
2≤-
2
3
b≤4

即-6≤b≤-3.…(10分)
假设存在点M(x0,y0)使得f(x)在M处切线斜率为2b,
则f'(x0)=2b,即3x20+2bx0-2b=0,…(11分)
△=4b2+24b=4(b2+6b)=4(b+3)2-3b,
∵-6≤b≤-3,∴-3b≤△≤0,…(12分)
当b=-6时,△=0,
3x02-12x0+12=0得x0=2
故存在这样点M,坐标为(2,-10).…(14分)
点评:本题考查导数知识的运用,考查函数零点,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函数f(x)的单调递减区间为(
13
,1),求函数f(x)的解析式;
(2)若f(x)的导函数为f′(x),对任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值;
(2)当a=-2时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,则切点P的坐标是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,则f(2013)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+3x2+a(a为常数) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步练习册答案