精英家教网 > 高中数学 > 题目详情
如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥ 平面ABC,AB=2,AF=2,CE=3,BD=1,O为BC的中点.
(1)求证:AO∥平面DEF;
(2)求证:平面DEF⊥平面BCED;
(3)求平面DEF与平面ABC相交所成锐角二面角的余弦值.
证明:(1)取DE中点G,以BC中点O为原点,OC、OA分别为x、y轴,建系如图空间坐标系,则可得
A(0,,0)、B(﹣1,0,0)、C(1,0,0)、D(﹣1,0,1)、
E(1,0,3)、F(0,,2)、G(0,0,2),
=(2,0,2),=(1,,1).
设平面DEF的一法向量=(x,y,z),则

取x=1,则y=0,z=﹣1,
可得=(1,0,﹣1),
=(0,,0),=0,
.又OA平面DEF,
∴OA∥平面DEF.
(2)因为直线AO是平面BCDE的一条垂线,
∴平面BCED的一法向量为=(0,,0),
=0,平面BCED的法向量与平面DEF的法向量互相垂直
∴平面DEF⊥平面BCED
(3)由(1)知平面DEF的一个法向量=(1,0,﹣1),
平面ABC即xOy坐标平面,可得它的一个法向量=(0,0,1),
=﹣1,==1
∴cos<>==﹣
∴求平面DEF与平面ABC相交所成锐角二面角的余弦值为|cos<>|=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,BD=1,AF=2,CE=3,O为AB的中点.
(Ⅰ)求平面DEF与平面ABC相交所成锐角二面角的余弦值;
(Ⅱ)在DE上是否存在一点P,使CP⊥平面DEF?如果存在,求出DP的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

5、如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体是由以正三角形ABC为底面的直棱柱被平面 DEF所截而得.AB=2,BD=1,CE=3,AF=a,O为AB的中点.
(1)当a=4时,求平面DEF与平面ABC的夹角的余弦值;
(2)当a为何值时,在棱DE上存在点P,使CP⊥平面DEF?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥
平面ABC,AB=2,AF=2,CE=3,BD=1,O为BC的中点.
(1)求证:AO∥平面DEF;
(2)求证:平面DEF⊥平面BCED;
(3)求平面DEF与平面ABC相交所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,BD=1,AF=2,CE=3,O为AB的中点.
(1)求证:OC⊥DF;
(2)试问线段CE上是否存在一点P,使得OP∥平面DEF?若存在,求出CP的长度,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案