精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x+sin x.
(1)设P,Q是函数f(x)图像上相异的两点,证明:直线PQ的斜率大于0;
(2)求实数a的取值范围,使不等式f(x)≥axcos x在上恒成立.

(1)见解析   (2)(-∞,2]

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600无后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需要各种开支2 000元.

(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断f(x)的单调性;
(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数同时满足以下三个条件:
(1) 对任意的,总有;(2);(3) 若,且,则有成立,则称为“友谊函数”,请解答下列各题:
(1)若已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?并给出理由.
(3)已知为“友谊函数”,假定存在,使得, 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=log3(9x)·log3(3x),≤x≤9.
(1)若m=log3x,求m的取值范围.
(2)求f(x)的最值,并给出最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(),其图像在处的切线方程为.函数
(1)求实数的值;
(2)以函数图像上一点为圆心,2为半径作圆,若圆上存在两个不同的点到原点的距离为1,求的取值范围;
(3)求最大的正整数,对于任意的,存在实数满足,使得

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案