精英家教网 > 高中数学 > 题目详情

已知定义域为的函数同时满足以下三个条件:
(1) 对任意的,总有;(2);(3) 若,且,则有成立,则称为“友谊函数”,请解答下列各题:
(1)若已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?并给出理由.
(3)已知为“友谊函数”,假定存在,使得, 求证:.

(1)(2)是友谊函数(3)见解析.

解析试题分析:(1)利用赋值法由,再由,所以(2)分别验证(1)由指数函数的性质在区间上的最小值为0,(2)直接带入验证易得(3)利用做差法直接比较  (3) 先利用单调性的定义证明抽象函数的单调性,然后再证明
, 又由
 
(2)显然上满足(1) ;(2).(3)若,且,则有
满足条件(1)、(2)、(3),所以为友谊函数.
(3)由 (3)知任给其中,且有,不妨设

所以:.
下面证明:(i)若,则有
,则,这与矛盾;
(2)若,则,这与矛盾;   
综上所述:
考点:函数的概念与性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已函数是定义在上的奇函数,在.
(1)求函数的解析式;并判断上的单调性(不要求证明);
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-4ax+2a+6,x∈R.
(1)若函数的值域为[0,+∞),求a的值;
(2)若函数的值域为非负数集,求函数f(a)=2-a|a+3|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x+sin x.
(1)设P,Q是函数f(x)图像上相异的两点,证明:直线PQ的斜率大于0;
(2)求实数a的取值范围,使不等式f(x)≥axcos x在上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的奇偶性;
(2)若函数上为减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
(1)写出y关于r的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数a为常数且a>0.
(1)证明:函数f(x)的图像关于直线x=对称;
(2)若x0满足f(f(x0))= x0但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;
(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为
(1)当时,求直路所在的直线方程;
(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域为E,值域为F.
(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5﹣与集合F的关系;
(2)若E={1,2,a},F={0,},求实数a的值.
(3)若,F=[2﹣3m,2﹣3n],求m,n的值.

查看答案和解析>>

同步练习册答案