已知函数.
(1)讨论函数的奇偶性;
(2)若函数在上为减函数,求的取值范围.
(1)当时,是奇函数;当时,是偶函数;当时,是非奇非偶函数,(2).
解析试题分析:(1)研究函数奇偶性,首先研究定义域,,在定义域前提下,研究相等或相反关系. 若,则,,,若,,,,(2)利用函数单调性定义研究函数单调性. 因函数在上为减函数,故对任意的,都有,即恒成立,恒成立,因为,所以.
解:(1) (1分)
若为偶函数,则对任意的,都有,
即,,对任意的都成立。由于不恒等于0,故有,即 ∴当时,是偶函数。 (4分)
若为奇函数,则对任意的,都有,
即,对任意的都成立。由于不恒等于0,故有,即∴当时,是奇函数。(6分)
∴当时,是奇函数;当时,是偶函数;当时,是非奇非偶函数。 (7分)
(2)因函数在上为减函数,故对任意的,都有, (2分)
即恒成立。(4分)
由,知恒成立,即恒成立。
由于当时 (6分)
∴ (7分)
考点:函数奇偶性与单调性
科目:高中数学 来源: 题型:解答题
已知定义域为的函数同时满足以下三个条件:
(1) 对任意的,总有;(2);(3) 若,,且,则有成立,则称为“友谊函数”,请解答下列各题:
(1)若已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?并给出理由.
(3)已知为“友谊函数”,假定存在,使得且, 求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当时,求在上有最大值;
(3)设函数具有“性质”,且当时,.若与交点个数为2013,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;
(2)试求一个函数,使(为常数,)为广义周期函数,并求出它的一个广义周期和周距;
(3)设函数是周期的周期函数,当函数在上的值域为时,求在上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com