已函数是定义在上的奇函数,在上.
(1)求函数的解析式;并判断在上的单调性(不要求证明);
(2)解不等式.
(1),是上增函数;(2)不等式的解集为.
解析试题分析:(1)这是由函数的对称性求函数的解析式问题,先设,进而得到,根据奇函数的定义即可得出,从而可写出函数的解析式,对于函数的单调性则根据指数函数、对数函数的单调性及奇函数的性质进行判断即可;(2)先根据奇函数的定义进行化简不等式,转化为,进而根据函数的单调性与定义域,列出不等式组,从中求解该不等式组即可.
试题解析:(1)设,则
又是奇函数,所以, 3分
当时,、单调递增,所以单调递增且,由奇函数的性质可知在也单调递增且
所以是上的增函数
(2)是上增函数,由已知得
等价于
不等式的解集为.
考点:1.函数的奇偶性;2.分段函数的解析式求法;3.基本初等函数的图像与性质;4.函数的单调性及其应用.
科目:高中数学 来源: 题型:解答题
已知函数(且),.
(1)若在定义域上有极值,求实数的取值范围;
(2)当时,若对,总,使得,求实数的取值范围;(其中为自然对数的底数)
(3)对,且,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600无后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需要各种开支2 000元.
(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于定义域为的函数,若同时满足:
①在内单调递增或单调递减;
②存在区间[],使在上的值域为;
那么把函数()叫做闭函数.
(1) 求闭函数符合条件②的区间;
(2) 若是闭函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义域为的函数同时满足以下三个条件:
(1) 对任意的,总有;(2);(3) 若,,且,则有成立,则称为“友谊函数”,请解答下列各题:
(1)若已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?并给出理由.
(3)已知为“友谊函数”,假定存在,使得且, 求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com