精英家教网 > 高中数学 > 题目详情
设t为实数,|
e1
|=2,|
e2
|=1,
e1
e2
的夹角为
π
3
,若向量2t
e1
+7
e2
与向量
e1
+t
e2
的夹角为钝角,则实数t的取值范围是
 
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:由向量的数量积的定义得到,
e1
e2
=1,由于向量2t
e1
+7
e2
e1
+t
e2
的夹角为钝角,可得(2t
e1
+7
e2
)•(
e1
+t
e2
)<0,且向量2t
e1
+7
e2
e1
+t
e2
不共线.分别求得t的范围,再求交集即可.
解答: 解:由|
e1
|=2,|
e2
|=1,
e1
e2
的夹角为
π
3

e1
e2
=2×1×cos
π
3
=1,
由于向量2t
e1
+7
e2
e1
+t
e2
的夹角为钝角,
可得(2t
e1
+7
e2
)•(
e1
+t
e2
)<0,
且向量2t
e1
+7
e2
e1
+t
e2
不共线.
由(2t
e1
+7
e2
)•(
e1
+t
e2
)<0,
可得 2t2+15t+7<0,解得-7<t<-
1
2

再由2t
e1
+7
e2
e1
+t
e2
不共线,
可得2t2≠7,解得 t≠±
14
2

综上可得,实数t的取值范围是 (-7,-
14
2
)∪(-
14
2
,-
1
2
),
故答案为:(-7,-
14
2
)∪(-
14
2
,-
1
2
).
点评:本题主要考查两个向量的数量积的定义,两个向量共线的性质,用两个向量的数量积表示两个向量的夹角,体现了等价转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在边长为a的正方形内随机取一个点,则此点落在该正方形的内切圆内部的概率为(  )
A、
π
4
B、
π
6
C、
2
π
D、
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2an-1(n∈N*),则a4=(  )
A、8B、16C、31D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是(  )
A、函数y=cos(x+
π
3
)的图象是关于点((
π
6
,0)成中心对称的图形
B、函数y=cos4x-sin4x的最小正周期为2π
C、函数y=sin(2x+
π
3
)在区间(-
π
3
π
6
)内单调递增
D、函数y=tan(x+
π
3
)的图象是关于直线x=
π
6
成轴对称的图形

查看答案和解析>>

科目:高中数学 来源: 题型:

设是虚数单位,若复数
a-i
2+i
为实数,则实数a的值为(  )
A、-2
B、2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的各项均为正数,且3a1+2a2=16,a32=4a2a6
(I)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足条件:2bn=[1-(-1)n]an,求数列{bn}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:

若x0是函数f(x)=2x-x-3的零点,则[x0](表示不超过x0的最大整数)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π
2
,G是BC的中点.AB=BC=2AD=4,E、F分别是AB、CD上的动点,且EF∥BC,设AE=x(0<x<2),沿EF将梯形ABCD翻折,使使平面AEFD⊥平面EBCF,如图.
(1)当x=2时,求证:BD⊥EG;
(2)若以B、C、D、F为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
x
,y=x2,y=3x,y=log2x中,在区间(0,+∞)上单调递减的是(  )
A、y=
1
x
B、y=x2
C、y=3x
D、y=log2x

查看答案和解析>>

同步练习册答案