精英家教网 > 高中数学 > 题目详情
20、直角三角形ABC中∠C=90°,PA⊥平面ABC,AM⊥PB于M,AN⊥PC于N.
求证:①BC⊥平面PAC;
②PB⊥平面AMN.
分析:①由已知中直角三角形ABC中∠C=90°,PA⊥平面ABC,我们易得到AC⊥BC,PA⊥BC,由线面垂直的判定定理,即可得到BC⊥平面PAC;
②由①的结论,结合线面垂直的性质,可得BC⊥AN,由AM⊥PB于M,AN⊥PC于N,我们由线面垂直的判定定理,即可得到PB⊥平面AMN.
解答:证明:①∵直角三角形ABC中∠C=90°,
∴AC⊥BC
又∵PA⊥平面ABC,
∴PA⊥BC
又由PA∩AC=A
∴BC⊥平面PAC;
②由①中结论得:BC⊥AN
又∵AN⊥PC于N.BC∩PC=C
∴AN⊥平面PBC,又由PB?平面PBC,
∴AN⊥PB,又由AM⊥PB于M,AN∩AM=A
∴PB⊥平面AMN
点评:本题考查的知识点是直线与平面垂直的判定,熟练掌握空间中直线与平面垂直的判定定理,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直角三角形ABC中,斜边BC长为2,O是平面ABC内一点,点
-m
满足
OP
=
OA
+
1
2
(
AB
+
AC
)
,则|
AP
|
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等腰直角三角形ABC中,AB=1,锐角顶点C在平面α内,β∥α,α、β的距离为1,随意旋转三角形ABC,则三角形ABC在β另一侧的最大面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

15、(选做题)(几何证明选讲选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)如图,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求证:PC⊥平面ADE;
(2)求直线AB与平面ADE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:直角三角形ABC中,AC⊥BC,AB=2,D是AB的中点,M是CD上的动点.
(1)若M是CD的中点,求
MA
MB
的值;
(2)求(
MA
+
MB
)•
MC
的最小值.

查看答案和解析>>

同步练习册答案