精英家教网 > 高中数学 > 题目详情

已知椭圆=1(a>b>0)与x轴的正半轴交于点A,O是原点.若椭圆上存在一点M,使MA⊥MO,求椭圆离心率e的取值范围.

<e<1.


解析:

设M(x,y),则=(x,y),=(x-a,y).

,

∴0=·=x(x-a)+y2.

由椭圆方程得y2=b2-x2代入得c2x2-a3x+a2b2=0.

解得x=a或.

由题意0<<a.

∴b2<c2.∴a2-c2<c2.

解得e2=>.

<e<1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设b>0,椭圆方程为
x2
2b2
+
y2
b2
=1
,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆+=1的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.

(1)若点G的横坐标为-,求直线AB的斜率.

(2)记△GFD的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆+=1的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.

(1)若点G的横坐标为-,求直线AB的斜率.

(2)记△GFD的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年上海市崇明县高考数学二模试卷(理科)(解析版) 题型:解答题

如图,已知椭圆(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为|OF1|.
(1)求a,b满足的关系式;
(2)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
(3)设圆x2+y2=r2(0<r<b),G是圆上任意一点,过G作圆的切线交椭圆于Q1,Q2两点,当OQ1⊥OQ2时,求r的值.(用b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆=1的离心率等于,点P(2,)在椭圆上。

       (1)求椭圆C方程;

       (2)设椭圆C的左右顶点分别为A,B,过点Q(2,0)的动直线l与椭圆C相交于M,N两点,是否存在定直线:x=t,使得直线与AN的交点G总在直线BM上?若存在,求出一个满足条件的t值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案