精英家教网 > 高中数学 > 题目详情

已知定圆A:,圆心为A,动圆M过点B(1,0),且和圆A相切,动圆的圆心M的轨迹记为C.

(1)求曲线C的方程;

(2)过点C(-1,0)任作一条与y轴不垂直的直线交曲线于M、N两点,在x轴上是否存在点H,使HC平分∠MHN?若存在,求出点H的坐标,若不存在,请说明理由.

答案:
解析:

  解:(1)圆A的圆心为,设动圆M的圆心M(x,y),半径为,依题意有,=|MB|.,可知点B在圆A内,从而圆M切于圆A,

  故,∴点M的轨迹是以A、B为焦点的椭圆,设椭圆故曲线C的方程为

  (2)当

  

  

  


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定圆A:(x+1)2+y2=16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.
(I)求曲线C的方程;
(II)若点P(x0,y0)为曲线C上一点,求证:直线l:3x0x+4y0y-12=0与曲线C有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高三下学期数学单元测试2-文科 题型:解答题

 已知定圆A:(x+1)2y2=16圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.

   (I)求曲线C的方程;

   (II)若点P(x0,y0)为曲线C上一点,求证:直线l: 3x0x+4y0y-12=0与曲线C有且只有一个交点。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2009年广东省湛江市高考数学一模试卷(理科)(解析版) 题型:解答题

已知定圆A:(x+1)2+y2=16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.
(I)求曲线C的方程;
(II)若点P(x,y)为曲线C上一点,求证:直线l:3xx+4yy-12=0与曲线C有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省名校高三数学一轮复习综合测试(二)(解析版) 题型:解答题

已知定圆A:(x+1)2+y2=16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.
(I)求曲线C的方程;
(II)若点P(x,y)为曲线C上一点,求证:直线l:3xx+4yy-12=0与曲线C有且只有一个交点.

查看答案和解析>>

同步练习册答案