精英家教网 > 高中数学 > 题目详情

已知向量数学公式=(sin数学公式,cos数学公式),数学公式=(cos数学公式数学公式cos数学公式),函数f(x)=数学公式数学公式
(1)求函数f(x)的单调递增区间;
(2)如果△ABC的三边a、b、c,满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域.

解:(1)∵向量=(sin,cos=(coscos),
∴函数f(x)==sin()+
令2kπ-≤2kπ+,解得
故函数f(x)的单调递增区间为
(2)由已知b2=ac,cosx===,∴≤cosx<1,∴0<x≤

<sin()≤1,
<sin()+≤1+
∴f(x)的值域为(,1+]
分析:(1)利用向量的数量积公式及辅助角公式,化简函数,即可求得函数f(x)的单调递增区间;
(2)通过b2=ac,利用余弦定理求出cosx的范围,然后求出x的范围,进而可求三角函数的值域.
点评:本题是中档题,考查三角函数的化简求值,余弦定理的应用,正弦函数的值域的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinβ,1),
b
=(2,-1)且
a
b
π
2
<β<π,则β等于
5
6
π
5
6
π
弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinωx,-cosωx),
b
=(
3
cosωx,cosωx)(ω>0),函数f(x)=
a
b
+
1
2
,且函数f(x)=
3
sinωxcosωx-cos2ωx+
1
2
的图象中任意两相邻对称轴间的距离为π.
(1)求ω的值;
(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,f(C)=
1
2
,且c=2
19
,△ABC的面积S=2
3
,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,2)
(1)若
a
b
,求tanθ的值;
(2)若
a
b
,且θ为第Ⅲ象限角,求sinθ和cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)已知向量
a
=(sinα,1),
b
=(2,2cosα-
2
),(
π
2
<α<π
),若
a
b
,则sin(α-
π
4
)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(cosθ,
3
),且
a
b
,其中θ∈(0,
π
2
).
(1)求θ的值;
(2)若sin(x-θ)=
3
5
,0<x<
π
2
,求cosx的值.

查看答案和解析>>

同步练习册答案