精英家教网 > 高中数学 > 题目详情
4.已知f(x)=|x+1|+|x-a|为偶函数,则a=1.

分析 根据函数奇偶性的定义建立方程关系进行求解即可.

解答 解:若f(x)=|x+1|+|x-a|为偶函数,
则f(-x)=f(x),
则f(-2)=f(2),
即1+|-2-a|=3+|2-a|,
即|a+2|=2+|a-2|,
平方得a2+4a+4=4+4|a-2|+a2-4a+4,
即2a-1=|a-2|,
平方得4a2-4a+1=a2-4a+4,
即3a2=3,即a2=1,
得a=1或a=-1,
当a=-1时,2a-1=|a-2|等价为-3=3不成立,
则a=1,
此时f(x)=|x+1|+|x-1|,
则f(-x)=|-x+1|+|-x-1|=|x+1|+|x-1|=f(x),满足函数f(x)是偶函数,
故答案为:1.

点评 本题主要考查函数奇偶性的应用,根据函数奇偶性的定义建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知抛物线Γ:x2=8y的焦点为F,直线l与抛物线Γ在第一象限相切于点P,并且与直线y=-2及x轴分别交于A、B两点,直线PF与抛物线Γ的另一交点为Q,过点B作BC∥AF交PF于点C,若|PC|=|QF|,则|PF|=(  )
A.$\sqrt{5}$-1B.2$+\sqrt{5}$C.3$+\sqrt{5}$D.5$+\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数y=4x2-xm的图象如图所示,则m的值可能为(  )
A.-2B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)是定义在R上的奇函数,已知x≥0时,f(x)=x(2-x).
(1)求函数f(x)的解析式.
(2)画出奇函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)(x∈R)是奇函数,且当x>0时,f(x)=2x-1,则f(-1)=(  )
A.2B.-2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.△ABC的外接圆圆心为O,半径为2,$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow 0$,则$\overrightarrow{CB}$在$\overrightarrow{CA}$方向上的投影为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|-2x2+x+1<0},则∁RA=(  )
A.$\left\{{x|-\frac{1}{2}<x<1}\right\}$B.$\left\{{x|-1<x<\frac{1}{2}}\right\}$C.$\left\{{x|-\frac{1}{2}≤x≤1}\right\}$D.$\left\{{x|-1≤x≤\frac{1}{2}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=log2x.若a=4b,则f(a)-f(b)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=$\frac{2}{{{3^x}+1}}$+m,m是实常数,
(1)当m=1时,写出函数f(x)的值域;
(2)当m=0时,判断函数f(x)的奇偶性,并给出证明;
(3)若f(x)是奇函数,不等式f(f(x))+f(a)<0对x∈R恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案