| A. | $\frac{81π}{4}$ | B. | 16π | C. | 9π | D. | $\frac{27π}{4}$ |
分析 正四棱锥P-ABCD的外接球的球心在它的高PE上,求出球的半径,求出球的表面积.
解答
解:如图,正四棱锥P-ABCD中,PE为正四棱锥的高,根据球的相关知识可知,正四棱锥的外接球的球心O必在正四棱锥的高线PE所在的直线上,
延长PE交球面于一点F,连接AE,AF,
棱锥的体积为$\frac{16}{3}$,棱锥的高为4,则底面边长为2,
由球的性质可知△PAF为直角三角形且AE⊥PF,根据平面几何中的射影定理可得PA2=PF•PE,因为AE=$\frac{\sqrt{{2}^{2}+{2}^{2}}}{2}$=$\sqrt{2}$,
所以侧棱长PA=$\sqrt{{4}^{2}+2}$=3$\sqrt{2}$,PF=2R,
所以18=2R×4,所以R=$\frac{9}{4}$,
所以S=4πR2=$\frac{81π}{4}$.
故选:A.
点评 本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{7}{12}$ | C. | $\frac{31}{40}$ | D. | $\frac{49}{60}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,ex-x-1<0 | B. | ?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0 | ||
| C. | ?x0∈R,e${\;}^{{x}_{0}}$-x0-1<0 | D. | ?x∈R,ex-x-1≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {a,c,d,e} | B. | {a,c} | C. | {b,d} | D. | {d} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{12}{13}$ | B. | $\frac{5}{13}$ | C. | -$\frac{5}{13}$ | D. | -$\frac{12}{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com