精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),令bn=
1
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令Tn=b1+b2•2+b3•22+…bn•2n-1
求证:①对于任意正整数n,都有Tn
1
6
.②对于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0时,Tn>m.
(Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
即an=an-1+2n-1(n≥3)…(1分)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n-1+2n-2+…+22+2+1+2
=2n+1,n≥3.…(3分)
检验知n=1,2时,结论也成立
故an=2n+1.…(4分)
(Ⅱ) ①由于bn2n-1=
1
(2 n+1)(2n+1 +1)
2n-1

=
1
2
(2n+1+1)-(2n+1)
(2n+1)(2n+1+1)

=
1
2
(
1
2 n+1
-
1
2n+1+1
)

故Tn=b1+b2•2+b3•22+…+bn•2n-1
=
1
2
(
1
1+2
-
1
1+22
+
1
1+22
-
1
1+23
+…+
1
2n+1
-
1
2n+1+1
)

=
1
2
(
1
1+2
-
1
2n+1+1
)

1
2
-
1
1+2

=
1
6
.…(9分)
②若Tn>m,其中m∈(0,
1
6
)
,则有
1
2
(
1
1+2
-
1
2n+1+1
)>m

2n+1
3
1-6m
-1

n>log2(
3
1-6m
-1)-1>0

n0=[log2(
3
1-6m
-1)-1]+1

=[log2(
3
1-6m
-1)
](其中[x]表示不超过x的最大整数),
则当n>n0时,Tn>m.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案