【题目】一片森林原面积为.计划从某年开始,每年砍伐一些树林,且每年砍伐面积的百分比相等.并计划砍伐到原面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的.已知到今年为止,森林剩余面积为原面积的.
(1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年?
(3)为保护生态环境,今后最多还能砍伐多少年?
【答案】(1);(2)到今年为止,已砍伐了5年;(3)今后最多还能砍伐15年.
【解析】试题分析:(1)根据每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,设每年砍伐面积的百分比为x 可建立方程,解之即可得到每年砍伐面积的百分比;
(2)设经过m年剩余面积为原来的.根据题意:到今年为止,森林剩余面积为原来的.可列出关于m的等式,解之即可;
(3)根据题意设从今年开始,以后砍了n年,再求出砍伐n年后剩余面积,由题意,建立关于n的不等关系,利用一些不等关系即可求得今后最多还能砍伐多少年.
解:(1)设每年砍伐面积的百分比为x ( 0<x<1).则,
即,解得
(2)设经过m年剩余面积为原来的,则,
即,,解得m=5
故到今年为止,已砍伐了5年.
(3)设从今年开始,以后砍了n年,则n年后剩余面积为
令≥,即(1﹣x)n≥,≥,≤,
解得n≤15
故今后最多还能砍伐15年.
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马中,侧棱底面,且, 为中点,点在上,且平面,连接, .
(Ⅰ)证明: 平面;
(Ⅱ)试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(Ⅲ)已知, ,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复.若填入A方格的数字大于B方格的数字,则不同的填法共有( )
A. 192种 B. 128种 C. 96种 D. 12种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且.
(1)求函数在上的单调区间,并给以证明;
(2)设关于的方程的两根为,试问是否存在实数,使得不等式对任意的及恒成立?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙同学参加学校“一站到底”闯关活动,活动规则:①依次闯关过程中,若闯关成功则继续答题;若没通关则被淘汰;②每人最多闯3关;③闯第一关得10分,闯第二关得20分,闯第三关得30分,一关都没过则没有得分.已知甲每次闯关成功的概率为,乙每次闯关成功的概率为.
(Ⅰ)设乙的得分总数为,求得分布列和数学期望;
(Ⅱ)求甲恰好比乙多30分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家里躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》.自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求:“幼儿园、中小学等教育机构停课,停课不停学”,学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的.某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:
年龄(岁) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(1)请补全被调查人员年龄的频率分布直方图;
(2)若从年龄在的被调查者中分别随机选取一人进行追踪调查,求这两人都赞成“停课”这一举措的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com