精英家教网 > 高中数学 > 题目详情
已知椭圆C:的离心率为,过右顶点A的直线l与椭圆C相交于A,B两点,且B(-1,-3),
(Ⅰ)求椭圆C和直线l的方程;
(Ⅱ)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D,若曲线x2-2mx+y2+4y+m2-4=0与区域D有公共点,试求实数m的最小值。

解:(Ⅰ)由离心率e=,得
,①
又点B(-1,-3)在椭圆C:上,即,②
解①②得
故所求椭圆方程为
由A(2,0),B(-1,-3)得直线l的方程为y=x-2。
(Ⅱ)曲线x2-2mx+y2+4y+m2-4=0,
即圆(x-m)2+(y+2)2=8,其圆心坐标为G(m,-2),半径r=2,表示圆心在直线y=-2上,半径为2的动圆,
要求实数m的最小值,由下图可知,只须考虑m<0的情形.

设圆G与直线l相切于点T,则由,得m=±4,
当m=-4时,过点G(-4,-2)与直线l垂直的直线l′的方程为x+y+6=0,
解方程组,得T(-2,-4),
因为区域D内的点的横坐标的最小值与最大值分别为-1,2,
所以切点TD,
由图可知当圆G过点B时,m取得最小值,
即(-1-m)2+(-3+2)2=8,解得mmin=--1。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:的离心率为,双曲线x²-y²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为

查看答案和解析>>

科目:高中数学 来源:2009年广东省广州市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:的离心率为,且经过点
(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市七区高三第一次调研测试数学理卷 题型:选择题

已知椭圆C:的离心率为,过右焦点且斜率为的直线与椭圆C相交于两点.若,则 =(      )

A.         B.                  C.2            D.

 

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二第一学期期末考试文科数学 题型:解答题

(本小题满分12分)

已知椭圆C:,它的离心率为.直线与以原点为圆心,以C的短半轴为半径的圆O相切. 求椭圆C的方程.

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年吉林一中高二下学期第一次月考数学文卷 题型:解答题

.已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线与椭圆C交于两点,点,且,求直线的方程.

 

查看答案和解析>>

同步练习册答案