解:(Ⅰ)由离心率e=
,得
,
即
,①
又点B(-1,-3)在椭圆C:
上,即
,②
解①②得
,
故所求椭圆方程为
,
由A(2,0),B(-1,-3)得直线l的方程为y=x-2。
(Ⅱ)曲线x2-2mx+y2+4y+m2-4=0,
即圆(x-m)2+(y+2)2=8,其圆心坐标为G(m,-2),半径r=2
,表示圆心在直线y=-2上,半径为2
的动圆,
要求实数m的最小值,由下图可知,只须考虑m<0的情形.![]()
设圆G与直线l相切于点T,则由
,得m=±4,
当m=-4时,过点G(-4,-2)与直线l垂直的直线l′的方程为x+y+6=0,
解方程组
,得T(-2,-4),
因为区域D内的点的横坐标的最小值与最大值分别为-1,2,
所以切点T
D,
由图可知当圆G过点B时,m取得最小值,
即(-1-m)2+(-3+2)2=8,解得mmin=-
-1。
科目:高中数学 来源:2009年广东省广州市高考数学二模试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2010-2011学年重庆市七区高三第一次调研测试数学理卷 题型:选择题
已知椭圆C:![]()
的离心率为
,过右焦点
且斜率为
的直线与椭圆C相交于
、
两点.若
,则
=( )
A.
B.
C.2
D.![]()
查看答案和解析>>
科目:高中数学 来源:2013届广东省高二第一学期期末考试文科数学 题型:解答题
(本小题满分12分)
已知椭圆C:
,它的离心率为
.直线
与以原点为圆心,以C的短半轴为半径的圆O相切. 求椭圆C的方程.
查看答案和解析>>
科目:高中数学 来源:2010-2011年吉林一中高二下学期第一次月考数学文卷 题型:解答题
.已知椭圆C:
的离心率为
,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线
:
与椭圆C交于
,
两点,点
,且
,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com