精英家教网 > 高中数学 > 题目详情
动点P在抛物线y=x2+1上运动,则动点P和两定点A(-1,0)、B(0,-1)所成的△PAB的重心的轨迹方程是
9x2-3y+6x+1=0
9x2-3y+6x+1=0
分析:利用三角形的重心坐标公式,通过坐标转化,把重心坐标转化到P代入抛物线方程即可.
解答:解:在三角形△ABC中,三个顶点坐标分别为:A(x1,y1),B(x2,y2),C(x3,y3
则△ABC的重心坐标为:Q(
1
3
(x1+x2+x3),
1
3
(y1+y2+y3))
那么在△PAB中,设P点坐标为P(x0,y0
设重心坐标为Q(x',y')应该有x'=
1
3
(x0-1),y'=
1
3
(y0-1).
解出x0,y0 得x0=3x'+1,y0=3y'+1
因为P(x0,y0 )在抛物线y=x2+1上则有 3y'+1=(3x'+1)2+1化简得y'=3x'2+2x'+
1
3

即△PAB的重心的轨迹方程是:y=3x2+2x+
1
3

即9x2-3y+6x+1=0.
故答案为:9x2-3y+6x+1=0.
点评:本题考查曲线轨迹方程的求解,重心坐标公式的应用,转化思想的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设抛物线C:y=x2的焦点为F,动点P在直线l:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.则△APB的重心G的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线C:y=x2的焦点为F,动点P在直线l:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•枣庄模拟)抛物线D以双曲线C:8y2-8x2=1的焦点F(0,c),(c>0)为焦点.
(1)求抛物线D的标准方程;
(2)过直线l:y=x-1上的动点P作抛物线D的两条切线,切点为A,B.求证:直线AB过定点Q,并求出Q的坐标;
(3)在(2)的条件下,若直线PQ交抛物线D于M,N两点,求证:|PM|•|QN|=|QM|•|PN|

查看答案和解析>>

科目:高中数学 来源:江西省高考真题 题型:解答题

如图,设抛物线C:y=x2的焦点为F,动点P在直线l:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点,
(1)求△APB的重心G的轨迹方程;
(2)证明∠PFA=∠PFB。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线C:y=x2的焦点为F,动点P在直线l∶x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.

(1)求△APB的重心G的轨迹方程.

(2)证明∠PFA=∠PFB.

查看答案和解析>>

同步练习册答案