精英家教网 > 高中数学 > 题目详情
8.分别用文字语言、图形语言和符号语言书写面面平行的判定定理.

分析 面面平行判定定理的内容用文字叙述、图形语言以及几何符号表示,分别写出即可.

解答 解:面面平行的判定定理;
(1)文字语言是“如果两个一个平面内有两个相交直线与另一个平面平行,则这两个平面平行”;
(2)图形语言表示:如图所示:

(3)用符号语言表示:$\left\{\begin{array}{l}{a?α,b?α}\\{a∩b=P}\\{a∥β,b∥β}\end{array}\right.$⇒α∥β.

点评 本题考查了平面与平面平行的判定定理,熟练掌握平面平行的判定定理是解答本题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知sin2θ=$\frac{3}{5}$,且0<2θ<$\frac{π}{2}$,则$\frac{2co{s}^{2}\frac{θ}{2}-sinθ-1}{\sqrt{2}sin(θ+\frac{π}{4})}$的值为(  )
A.1B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(sinx+cosx,-cosx),$\overrightarrow{b}$=(sinx+cosx,sinx),f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)x∈[-$\frac{π}{6}$,$\frac{3π}{8}$]时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.几何体的三视图如图所示,若从该几何体的实心外接球中挖去该几何体,则剩余几何体的表面积是(注:包括外表面积和内表面积)(  )
A.133πB.100πC.66πD.166π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:关于x的函数y=x2-3ax+4在[1,+∞)上是增函数,命题q:关于x的函数y=(2a-1)x在[1,+∞)上是减函数.若“p且q”为真命题,则实数a的取值范围是(  )
A.(-∞,$\frac{2}{3}$]B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{2}{3}$]D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-a|,不等式f(x)≤3的解集为[-1,5].
(Ⅰ)求实数a的值;
(Ⅱ)若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足$\left\{\begin{array}{l}{x^2}-7x-18≤0\\{x^2}+2x-8>0.\end{array}\right.$.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若?p是?q的必要不充分要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.通过随机询问某校高二年级学生在购买食物时是否看营养说明,得到如下列联表:
男生女生总计
看营养说明503080
不看营养说明10xy
总计60z110
参考数据:
P(K2≥K)0.100.050.010.005
K2.7063.8416.6357.879
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(a+c)(c+d)}$,n=a+b+c+d
(1)写出x,y,z的值
(2)根据以上列联表,问有多大把握认为“性别在购买食物时看营养说明”有关?
(3)从女生中按是否看营养说明采取分层抽样,抽取容量为5的样本,再从这5名女生中随机选取两名作深度访谈.求选到看与不看营养说明的女生各一名的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,F1,F2是椭圆${C_1}:\frac{x^2}{12}+\frac{y^2}{4}=1$与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是$\sqrt{2}$.

查看答案和解析>>

同步练习册答案