(本小题满分14分)
如图,四棱锥
的底面
是边长为
的正方形,
平面
,点
是
的中点.
![]()
⑴求证:
平面
;
⑵求证:平面
平面
;
⑶若
,求三棱锥
的体积.
⑴见解析; ⑵见解析;⑶
.
【解析】本试题主要是考查了立体几何中线面的平行的证明以及面面垂直的郑敏而后三棱锥体积的运算的综合运用。
⑴要证明
平面
;只要证明线线平行即可,运用判定定理得得到结论。
⑵要证平面
平面
;先通过线面垂直的证明,结合面面垂直的判定定理得到面面垂直。
⑶因为
,那么三棱锥
的体积利用转换顶点法来表示可得.
⑴设
交
于
,连结
.
![]()
因为
为正方形,所以
为
中点,又因为
为
的中点,所以
为
的中位线,
所以
,
……………3分
又因为
平面
,
平面
,
所以
平面
.……5分
⑵因为
为正方形,所以
,
因为
平面
,
平面
,
所以
,又
,
所以
平面
.………………………………………………………………8分
因为
平面
,所以平面
平面
.…………………………10分
⑶
.…………………………14分
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com