设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.
(1) 求椭圆方程.
(2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.
(1) ;(2).
解析试题分析:(1)由离心率得,由过点且与轴垂直的直线被椭圆截得的线段长为得,再加椭圆中可解出,可得椭圆方程;(2)将直线方程设为,交点设出,然后根据题意算出的面积,令则,所以当且仅当时等号成立,求出面积最大时的.
试题解析:(1)由题意可得,,又,解得,所以椭圆方程为 (4分)
(2)根据题意可知,直线的斜率存在,故设直线的方程为,设,由方程组消去得关于的方程 (6分)由直线与椭圆相交于两点,则有,即得
由根与系数的关系得
故 (9分)
又因为原点到直线的距离,
故的面积
令则,所以当且仅当时等号成立,
即时, (12分)
考点:1.椭圆方程;2.椭圆与直线综合;3.基本不等式.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。
(1)若点P的坐标为,求直线的方程。
(2)设椭圆的左焦点为F,请问:当点P运动时,是否总是相等?若是,请给出证明。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线,点P(-1,0)是其准线与轴的焦点,过P的直线与抛物线C交于A、B两点.
(1)当线段AB的中点在直线上时,求直线的方程;
(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是椭圆:上一点,分别为的左右焦点,,的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线经过点,且双曲线的渐近线与圆相切.
(1)求双曲线的方程;
(2)设是双曲线的右焦点,是双曲线的右支上的任意一点,试判断以为直径的圆与以双曲线实轴为直径的圆的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知、分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点、,且椭圆上存在点,使,其中是坐标原点,是实数.
(Ⅰ)求的取值范围;
(Ⅱ)当取何值时,的面积最大?最大面积等于多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com