精英家教网 > 高中数学 > 题目详情

设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.
(1) 求椭圆方程.
(2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.

(1) ;(2).

解析试题分析:(1)由离心率得,由过点且与轴垂直的直线被椭圆截得的线段长为,再加椭圆中可解出,可得椭圆方程;(2)将直线方程设为,交点设出,然后根据题意算出的面积,令,所以当且仅当时等号成立,求出面积最大时的.
试题解析:(1)由题意可得,又,解得,所以椭圆方程为               (4分)
(2)根据题意可知,直线的斜率存在,故设直线的方程为,设由方程组消去得关于的方程 (6分)由直线与椭圆相交于两点,则有,即
由根与系数的关系得
        (9分)
又因为原点到直线的距离
的面积
,所以当且仅当时等号成立,
时,              (12分)
考点:1.椭圆方程;2.椭圆与直线综合;3.基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆经过点.
(Ⅰ)求椭圆的方程;(Ⅱ)设为椭圆上的动点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。
(1)若点P的坐标为,求直线的方程。
(2)设椭圆的左焦点为F,请问:当点P运动时,是否总是相等?若是,请给出证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线,点P(-1,0)是其准线与轴的焦点,过P的直线与抛物线C交于A、B两点.
(1)当线段AB的中点在直线上时,求直线的方程;
(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是椭圆上一点,分别为的左右焦点的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,过点作直线,交椭圆异于两点,直线的斜率分别为,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线经过点,且双曲线的渐近线与圆相切.
(1)求双曲线的方程;
(2)设是双曲线的右焦点,是双曲线的右支上的任意一点,试判断以为直径的圆与以双曲线实轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点,且椭圆上存在点,使,其中是坐标原点,是实数.
(Ⅰ)求的取值范围;
(Ⅱ)当取何值时,的面积最大?最大面积等于多少?

查看答案和解析>>

同步练习册答案