精英家教网 > 高中数学 > 题目详情
6.给出代数式$\sqrt{(x+1)^{2}+1}$+$\sqrt{(x-3)^{2}+4}$的几何意义,并求它的最小值.

分析 利用两点间的距离公式转化为距离问题即可.

解答 解:设P(x,0),A(-1,-1),B(3,2),
则$\sqrt{(x+1)^{2}+1}$+$\sqrt{(x-3)^{2}+4}$=|PA|+|PB|,
则代数式$\sqrt{(x+1)^{2}+1}$+$\sqrt{(x-3)^{2}+4}$的几何意义是x轴的点P到定点A,B的距离之和,
则|PA|+|PB|≥|AB|=$\sqrt{(-1-3)^{2}+(-1-2)^{2}}$=$\sqrt{16+9}=\sqrt{25}=5$,
即代数式$\sqrt{(x+1)^{2}+1}$+$\sqrt{(x-3)^{2}+4}$的最小值为5.

点评 本题主要考查两点间距离公式的应用,根据代数式的特点将条件转化两点间的距离问题是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.求下列各式的值:
(1)arcsin(-$\frac{\sqrt{2}}{2}$);
(2)arcsin$\frac{1}{2}$;
(3)arccos(-$\frac{1}{2}$);
(4)arccos0;
(5)arctan(-$\frac{\sqrt{3}}{3}$);
(6)arccot$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=2x-3的值域为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,已知b=5,c=4$\sqrt{2}$,cos(C-B)=$\frac{7\sqrt{2}}{10}$,则cosA=$\frac{8\sqrt{10}-7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=2\sqrt{3}sinxcosx+2{cos^2}x-1({x∈R})$).
(1)求函数f(x)的最小正周期;
(2)若$f({x_0})=\frac{6}{5},{x_0}∈[{\frac{π}{4},\frac{π}{2}}]$,求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设平面向量$\overrightarrow m=(cosα,sinα)$(0≤α<2π),$\overrightarrow n=(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$
(1)证明;$(\overrightarrow m+\overrightarrow n)⊥(\overrightarrow m-\overrightarrow n)$
(2)当$|{\sqrt{3}\overrightarrow m+\overrightarrow n}|=|{\overrightarrow m-\sqrt{3}\overrightarrow n}$|,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=sinx-cosx在x=π处的切线方程为x+y-1-π=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设正项数列{an}满足a1=1,且Sn+Sn-1=an2(n≥2),这里Sn为正项数列{an}的前n项和.
(1)求此数列的通项公式an
(2)k为自然数,记bn=an•an+1…an+k,探索数列{bn}的前n项和Tn(k)的公式(不必说明理由)
(3)利用Tn(k)的公式,设计一种方法,计算12+22+…+n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.有下列四个命题:
①“若xy=1,则x,y互为倒数”的逆命题;
②“面积相等的三角形全等”的否命题;
③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;
④“若A∩B=B,则A?B”的逆否命题.
其中为真命题的是(  )
A.①②B.②③C.D.①②③

查看答案和解析>>

同步练习册答案