精英家教网 > 高中数学 > 题目详情
17.急剧增加的人口已经使我们赖以生存的地球不堪重负,控制人口急剧增长的急迫任务摆在我们面前.
(1)世界人口在过去的40 年内翻了一番,问每年人口平均增长率是多少?
(2)我国人口在2003年底达到13.14亿,若将人口平均增长率控制在1%以内,我国人口在2013年底最多有多少亿?
以下对数值可供计算使用:
N1.0101.0151.0171.3102.000
lgN0.00430.00650.00750.11730.3010
N12.4813.1113.1414.51
lgN1.09621.11761.11861.1616

分析 (1)本题求每年人口平均增长率,但已知40年内翻一番,从而在解题方法上可用方程的思想来解;
(2)本题是计算10年后我国人口的数量,由于题设中已知10年前以及每年的增长率,从而在解题方法上可先找到函数关系,直接计算即可.

解答 解:(1)设每年人口平均增长率为x,n年前的人口数为a,n年后的人口数为y,
则y=a(1+x)n
依题意,2a=a(1+x)40,即2=(1+x)40
两边同时取对数得:lg2=40lg(1+x),
则lg(1+x)=$\frac{lg2}{40}$=0.007525,
故1+x≈1.017,即x≈0.017,
故每年的人口平均增长率约是1.7%;
(2)依题意,y≤13.14(1+1%)10
两边同时取对数得:lgy≤lg13.14+10lg(1+1%)≈1.1616,
∴y≤14.51,
故2014年底至多有人口14.51亿.

点评 本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=1g(2+x)+lg(2一x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)记函数g(x)=10f(x)+3x.求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.极限$\underset{lim}{n→∞}\frac{1}{n}{\sum_{i=1}^{n}e}^{\frac{i}{n}}$的值为e-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=logax(a>0,a≠1)
(1)如图,当a=$\frac{1}{2}$时,设A,B,C是函数f(x)=logax的图象上的三点,它们的横坐标分别是t,t+2,t+4(t≥1),记△ABC的面积为S,求S=g(t)的解析式,并求S=g(t)的最大值;
(2)试比较$\frac{1}{2}$f(x)与f($\frac{x+1}{2}$)的大小;
(3)当a=10时,设F(x)=|f(x)|,且满足F(x)=F(t)=2F($\frac{x+t}{2}$)(0<x<t),问是否存在实数t,使得3<t<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“$\frac{ln3-5}{3}$≤k≤$\frac{ln2-1}{2}$”是“关于x的不等式lnx+x+1>x2+kx有且仅有2个正整数解”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若$f(x)={x^2}+2\int_0^1{f(x)dx,}$则$\int_0^1{f(x)dx=}$-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设地球的半径为R,在北纬45°纬线圈上有两点A、B,A在西经40°经线上,B在东经50°经线上,求A,B两点间纬线圈的劣弧长及A,B两点间球面距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.邵东某桶装水经营部每天的房租、人员工资等固定成本为360元,每桶水进价4元,销售单价与日均销量的关系如表所示
销售单价/元567891011
日均销售量/桶360320280240200160120
请根据以上数据作出分析,这个经营部怎样定价(单价要为整元)才能获得最大利润?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求值:$(1){e^{ln2}}+lg\frac{1}{100}+{(\sqrt{2014}-2015)^{lg1}}$;
$(2)-{(\frac{8}{27})^{-\frac{2}{3}}}×{(-8)^{\frac{2}{3}}}+|-100{|^{\sqrt{0.25}}}+\root{4}{{{{(3-π)}^4}}}$.

查看答案和解析>>

同步练习册答案