精英家教网 > 高中数学 > 题目详情
9.下列各组函数中,f(x)与g(x)相等的一组(  )
A.f(x)=($\sqrt{x}$)2,g(x)=xB.f(x)=$\frac{{x}^{2}}{x}$,g(x)=xC.f(x)=$\sqrt{{x}^{2}}$,g(x)=$\root{3}{{x}^{3}}$D.f(x)=$\root{6}{{x}^{3}}$,g(x)=$\sqrt{x}$

分析 分别判断两个函数的定义域和对应法则是否一致,否则不是同一函数.

解答 解:A选项,f(x)的定义域是(0,+∞),g(x)的定义域是 R;两个函数的定义域不相同,不是相等函数.
B 选项,f(x)的定义域是 {x|x≠0},g(x)的定义域是R;两个函数的定义域不相同,不是相等函数.
C 选项,对应关系(解析式)不同,f (x)=|x|,g(x)=x,
D 选项f(x)=x${\;}^{\frac{1}{2}}$=$\sqrt{x}$,g(x)=$\sqrt{x}$,定义域都是[0,+∞).是相等函数,
故选:D.

点评 本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知三角形ABC的三个顶点A(1,1),B(4,0),C(3,2),求三角形BC边上的高线和中线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各图中,可表示函数y=f(x)的图象的只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某市环保研究所对市中心每天环境污染情况进行调查研究后,发现一天中环境综合污染指数f(x)与时间x(小时)的关系为$f(x)=|{\frac{4}{3}sin(\frac{π}{36}x)-a}|+{a^{\frac{1}{2}}}$,x∈[0,24],其中a是与气象有关的参数,且$a∈[0,\frac{3}{4}]$,若用每天f(x)的最大值为当天的综合污染指数,记作M(a)
(1)令$t=\frac{4}{3}sin(\frac{π}{36}x)$,x∈[0,24],试求t的取值范围
(2)试求函数M(a)
(3)市政府规定每天的综合污染指数不得超过2,试问目前该市的污染指数是否超标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设全集为U=R,集合A={x|(x+3)(x-6)≤0},B={x|log2(x+2)<4}.
(1)求如图阴影部分表示的集合;
(2)已知C={x|2a<x<a+1},若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义域为R的奇函数满足f(x+6)=f(x),且x∈(0,3)时,f(x)=1-ln(x2+a),若函数y=f(x)在区间[-6,6]上有9个零点,则实数a的取值范围为e-9<a<e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数(4+5i)i(i为虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=lg\frac{x+1}{x-1}+lg(x-1)+lg(a-x)$ (a>1).
(I)求函数定义域并判断是否存在一个实数a,使得函数y=f(x)的图象关于某一条垂直于x轴的直线对称?若存在,求出这个实数a;若不存在,说明理由.
(II)当f(x)的最大值为2时,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$f(\frac{x}{2}-1)=2x+3$,则f(4)=23.

查看答案和解析>>

同步练习册答案