精英家教网 > 高中数学 > 题目详情
若f(x)=
x2+c+1
x2+c
的最小值为2,求c的范围.
考点:基本不等式在最值问题中的应用
专题:计算题,不等式的解法及应用
分析:换元,利用基本不等式,即可求c的范围.
解答: 解:令
x2+c
=t,则y=t+
1
t

∵f(x)=
x2+c+1
x2+c
的最小值为2,
∴0<t≤1,
∴0<
x2+c
≤1,
∴c≤1.
点评:本题考查基本不等式在最值问题中的应用,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数值域:y=
1-x2
1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(m2-1)x2+(m-1)x+n+2是奇函数,定义域为[a-1,2a],求m,n,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+4ax-4a+3=0},B={x|x2+2ax-2a=0},C={x|x2+(a-1)x+a2=0}.
(1)若A、B、C中至少有一个不是空集,求a的取值范围;
(2)若A、B、C中至多有一个不是空集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|+
4
x

(1)若f(x)=2恰有两个实数根,求a的值;
(2)若?x∈(0,+∞)都有f(x)≥1恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x-c=0},B={x|x2-3x+2=0},若A∩B=A,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤a},B={y|y=2x+3,x∈A},C={z|z=x2,x∈A},D={x|-4-a≤x≤2},若A∩D=A,B∪C=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x4+1,x∈{-1,0,1,2}的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)=f(-x),且当x∈(-∞,0),f(x)+xf′(x)<0成立,若a=(20.1)•f(20.1),b=(ln2)•f(ln2),c=(log2
1
8
)•f(log2
1
8
),则a,b,c的大小关系是(  )
A、a>b>c
B、c>b>a
C、c>a>b
D、a>c>b

查看答案和解析>>

同步练习册答案