精英家教网 > 高中数学 > 题目详情

已知方向向量为的直线l过椭圆的焦点以及点(0,),直线l与椭圆C交于 A 、B 两点,且A、B两点与另一焦点围成的三角形周长为

(1)求椭圆C的方程

(2)过左焦点且不与x轴垂直的直线m交椭圆于M、N两点,

(O坐标原点),求直线m的方程

 

【答案】

(1)                  (2)   

【解析】本试题主要是考查了椭圆方程的求解和直线与椭圆位置关系的运用。利用椭圆的几何性质,来表示得到a,b,c的值,从而解得方程,然后设出直线方程,联立方程组,借助于韦达定理,运用代数的方法来表示坐标,同时借助于题目中向量的关系式,得到坐标的关系,消去坐标,得参数的关系式,进而求解得到。解:(1)  

直线与x轴交点即为椭圆的右焦点   ∴c=2

由已知⊿周长为,则4a=,即,所以

故椭圆方程为                  

(2)椭圆的左焦点为,则直线m的方程可设为

代入椭圆方程得:

     

所以,,即  

原点O到m的距离,则

解得   

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(05年福建卷)(12分)

已知方向向量为的直线l过点(0,-2)和椭圆C:的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足

cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

22.

已知方向向量为的直线l过点()和椭圆的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足=,cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方向向量为的直线过椭圆C:=1(a>b>0)的焦点以及点(0,),椭圆C的中心关于直线的对称点在椭圆C的右准线上。

⑴求椭圆C的方程。

⑵过点E(-2,0)的直线交椭圆C于点M、N,且满足,(O为坐标原点),求直线的方程。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三上学期2月月考理科数学试卷 题型:解答题

已知方向向量为的直线l过椭圆的焦点以及点(0,),直线l与椭圆C交于 A 、B两点,且A、B两点与另一焦点围成的三角形周长为

(1)求椭圆C的方程

(2)过左焦点且不与x轴垂直的直线m交椭圆于M、N两点,(O坐标原点),求直线m的方程

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方向向量为的直线和椭圆的焦点,且椭圆C的中心关于直线的对称点在椭圆C的右准线上。

       (1)求椭圆C的方程

       (2)是否存在过点的直线交椭圆C于点M,N且满足

       (O为原点),若存在求出直线的方程,若不存在说明理由。

查看答案和解析>>

同步练习册答案