精英家教网 > 高中数学 > 题目详情
已知tanx=-2,求
sin2x-3sinxcosx-cos2x
的值.
考点:同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:sin2x-3sinxcosx-cos2x=
sin2x-3sinxcosx-cos2x
sin2x+cos2x
=
tan2x-3tanx-1
tan2x+1
,再代入,即可得出结论.
解答: 解:∵tanx=-2,
∴sin2x-3sinxcosx-cos2x=
sin2x-3sinxcosx-cos2x
sin2x+cos2x
=
tan2x-3tanx-1
tan2x+1
=
4+6-1
4+1
=
9
5

sin2x-3sinxcosx-cos2x
=
3
5
5
点评:本题考查同角三角函数关系,考查学生的计算能力,正确弦化切是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,△ABC在平面α内,∠ACB=90°,AB=2BC=2,P为平面α外一个动点,且PC=
3
,∠PBC=60°
(Ⅰ)问当PA的长为多少时,AC⊥PB.
(Ⅱ)当△PAB的面积取得最大值时,求直线PC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c.角A为锐角,且满足3b=5asinB.
(1)求sin2A+cos2
B+C
2
的值;
(2)若a=
2
,△ABC的面积为
3
2
,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a,b,c为角A,B,C的对边,已知2B=A+C,b=1,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一半径为
3
的圆形靶内有一个半径为1的同心圆,将大圆分成两部分,小圆内部区域记为2环,圆环区域记为1环,某同学向该靶投掷3枚飞镖,每次1枚.假设他每次必定会中靶,且投中靶内各点是随机的.
(Ⅰ)求该同学在一次投掷中获得2环的概率;
(Ⅱ)设X表示该同学在3次投掷中获得的环数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在x轴上的椭圆M的离心率为
1
2
,椭圆上异于长轴顶点的任意点A与左右两焦点F1,F2构成的三角形中面积的最大值为
3

(Ⅰ)求椭圆M的标准方程;
(Ⅱ)已知点P(4,0),联结AP与椭圆的另一交点记为B,若AP与椭圆相切则视为A,B重合,联结BF2与椭圆的另一交点记为C,求
PA
F2C
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是线段AE上的动点.
(Ⅰ)试确定点M的位置,使AC∥平面DMF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+
1
a
)-ax,其中a∈R且a≠0
(Ⅰ)讨论f(x)的单调区间;
(Ⅱ)若直线y=ax的图象恒在函数f(x)图象的上方,求a的取值范围;
(Ⅲ)若存在-
1
a
<x1<0,x2>0,使得f(x1)=f(x2)=0,求证:x1+x2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

P为正方体ABCD-A1B1C1D1对角线BD1上的一点,且BP=λBD1(λ∈(0,1).下面结论:
①AD1⊥C1P;
②若BD1⊥平面PAC,则λ=
1
3

③若△PAC为钝角三角形,则λ∈(0,
1
2
);
④若λ∈(
2
3
,1),则△PAC为锐角三角形.
其中正确的结论为
 
.(写出所有正确结论的序号)

查看答案和解析>>

同步练习册答案