精英家教网 > 高中数学 > 题目详情
过点A(2,1)的直线交圆x2+y2-2x+4y=0于B,C两点,当|BC|最大时,直线BC的方程是(  )
A、3x-y-5=0B、3x+y-7=0C、x+3y-5=0D、x-3y+5=0
分析:设出直线BC的方程为y=kx+b,由题意可知当|BC|最大时,过A的直线必然过圆的圆心,故把圆的方程化为标准方程,找出圆心的坐标,再由A的坐标,都代入到所设的方程中求出k和b的值,从而确定出直线BC的方程.
解答:解:把圆的方程x2+y2-2x+4y=0化为标准方程为(x-1)2+(y+2)2=5,
∴圆心坐标为(1,-2),
设直线BC的方程为y=kx+b,又A(2,1),
把圆心坐标和A的坐标代入得:
2k+b=1
k+b=-2

解得
k=3
b=-5

则直线BC的方程为y=3x-5,即3x-y-5=0.
故选A
点评:此题考查了直线与圆相交的性质,以及根据两点坐标利用待定系数法求直线的解析式,理解|BC|最大即线段BC为圆的直径,即直线BC过圆心是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图梯形ABCD,AD∥BC,∠A=90°,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为P,在直线DE上是否存在一点M,使得PM∥面BCD?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为2的菱形ABCD,如图(a)所示,∠BAD=60°,过D点作DE⊥AB于E点,现沿着DE折成一个直二面角,如图(b)所示;
(1)求AC与BD所成角的余弦值;
(2)求点D到平面ABC的距离;
(3)连接CE,在CE上取点G,使EG=
2
7
7
,连接BG,求证:AC⊥BG.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)离心率为
3
2
,且过P(
6
2
2
).
(1)求椭圆E的方程;
(2)已知直线l过点M(-
1
2
,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直  线l与椭圆E交于A,B两点,与y轴交与D点,若
AB
=λ
AN
BD
BN
,且λ+μ=
5
2
,求抛物线C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省皖南八校高三第一次联考理科数学试卷 题型:解答题

(本小题满分12分)已知椭圆过点A(a,0),B(0,b)的直

 

线倾斜角为,原点到该直线的距离为.

 

(1)求椭圆的方程;

(2)斜率小于零的直线过点D(1,0)与椭圆交于M,N两点,若求直线MN的方程;

(3)是否存在实数k,使直线交椭圆于P、Q两点,以PQ为直径的圆过点D(1,0)?若存在,求出k的值;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案