精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.

【答案】解:设AB的中点为R,则R也是PQ的中点,设R的坐标为(x1 , y1),则在Rt△ABP中,|AR|=|PR|.
又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2﹣|OR|2=36﹣( ).
又|AR|=|PR|= ,所以有(x1﹣4)2+ =36﹣( ),即 ﹣4x1﹣10=0.
因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.
设Q(x,y),因为R是PQ的中点,所以x1=
代入方程 ﹣4x1﹣10=0,得 ﹣10=0,
整理得:x2+y2=56,这就是所求的Q点的轨迹方程.
【解析】设AB的中点为R,设R的坐标为(x1 , y1),则在Rt△ABP中,|AR|=|PR|,在Rt△OAR中,|AR|2=|AO|2﹣|OR|2=36﹣( ),再由|AR|=|PR|= ,由此得到点R的轨迹方程 ﹣4x1﹣10=0①,设Q(x,y),因为R是PQ的中点,可得x1= ,代入①化简即得所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a3=12,a11=﹣5,且任意连续三项的和均为11,则a2017=;设Sn是数列{an}的前n项和,则使得Sn≤100成立的最大整数n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱 中,底面 是边长为2的正方形, 分别为线段 的中点.

(1)求证: ||平面
(2)四棱柱 的外接球的表面积为 ,求异面直线 所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从1,2,3,4,5,6这六个数中,不放回地任意取两个数,每次取一个数,则所取的两个数都是偶数的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一点.

(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;
(3)设SA=4,AB=2,当OE丄SC时,求二面角E﹣BD﹣C余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x),满足f(1﹣x)=f(x),(x﹣ )f′(x)>0,若x1<x2且x1+x2>1,则有(
A.f(x1)<f(x2
B.f(x1)>f(x2
C.f(x1)=f(x2
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)是定义在(0,+∞)上的函数,当x>1时,f(x)>0,且满足
(1)求f(1)的值;
(2)判断并证明函数的单调性;
(3)若f(2)=1,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列图象中不能作为函数图象的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数x,y满足条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为12,则 的最小值为

查看答案和解析>>

同步练习册答案