精英家教网 > 高中数学 > 题目详情

【题目】某公司租赁甲、乙两种设备生产两类产品,甲种设备每天能生产类产品件和类产品件,乙种设备每天能生产类产品件和类产品件.已知设备甲每天的租赁费为元,设备乙每天的租赁费为元,现该公司至少要生产类产品件,类产品件,求所需租赁费最少为多少元?

【答案】

【解析】

设甲种设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,可得出目标函数为,列出满足题意的约束条件,然后利用线性规划,求出最优解,代入目标函数计算即可.

设甲种设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,则

甲、乙两种设备生产两类产品的情况如下表所示:

则满足的约束条件为,即:

作出不等式表示的平面区域,

对应的直线过两直线的交点时,

直线轴上的截距最小,

此时,目标函数取得最小值为元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市教育局卫生健康所对全市高三年级的学生身高进行抽样调查,随机抽取了100名学生,他们身高都处于五个层次,根据抽样结果得到如下统计图表,则从图表中不能得出的信息是( )

A. 样本中男生人数少于女生人数

B. 样本中层次身高人数最多

C. 样本中层次身高的男生多于女生

D. 样本中层次身高的女生有3人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知位于轴左侧的圆轴相切于点且被轴分成的两段圆弧长之比为,直线与圆相交于两点,且以为直径的圆恰好经过坐标原点.

1)求圆的方程;

2)求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的离心率,左、右焦点分别为,过右焦点任作一条不垂直于坐标轴的直线l与椭圆C交于AB两点,的周长为.

1)求椭圆C的方程;

2)记点B关于x轴的对称点为点,直线x轴于点D.的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆C1x2+y210x+4y+250与圆C2x2+y214x+2y+250,点AB分别是C1C2上的动点,M为直线yx上的动点,则|MA|+|MB|的最小值为(  )

A.3B.3C.5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点,过的直线交椭圆两点,且是线段的中点.

1)求椭圆的离心率;

2)已知是椭圆的左焦点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形,.

(1)若,求证:平面

(2)求证:平面平面

(3)若,求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点下的距离为10.

(1)求抛物线C的方程;

(2)设过焦点F的的直线与抛物线C交于两点,且抛物线在两点处的切线分别交x轴于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一块黄铜板上插着三根宝石针,在其中一根针上从下到上穿好由大到小的若干金片.若按照下面的法则移动这些金片:每次只能移动一片金片;每次移动的金片必须套在某根针上;大片不能叠在小片上面.设移完n片金片总共需要的次数为an,可推得a1=1an+1=2an+1.如图是求移动次数在1000次以上的最小片数的程序框图模型,则输出的结果是(  )

A. 8B. 9C. 10D. 11

查看答案和解析>>

同步练习册答案