精英家教网 > 高中数学 > 题目详情
已知直线l1:mx-y=0,l2:x+my-m-2=0
(1)求证:直线l2恒过定点,并求定点坐标;
(2)求证:对m的任意实数值,l1和l2的交点M总在一个定圆上;
(3)若l1与定圆的另一个交点为P1,l2与定圆的另一个交点为P2,求当实数m取值变化时,△MP1P2面积取得最大值时,直线l1的方程.
分析:(1)对于任意实数m,l2:x+my-m-2=0恒过定点,则与m的取值无关,转化为(x-2)+m(y-1)=0让m的系数为零、x-2=0即可得到直线l2恒过定点,以及定点坐标;
(2)联立两条直线方程,消去m,即得到l1和l2的交点M的方程,判断M总在一个定圆上即可;
(3)通过l1与定圆的另一个交点为P1,l2与定圆的另一个交点为P2,利用(2)说明P1P2是圆C的直径,
当且仅当圆心C(1,
1
2
)到l1的距离等于C到l2的距离时,△MP1P2面积取得最大值,利用点到直线的距离公式列出m的关系式,求出m即可得到直线l1的方程.
解答:解:(1)方程l2:x+my-m-2=0可化为(x-2)+m(y-1)=0
∵对于任意实数m直线l2:x+my-m-2=0 恒过定点
x-2=0
y-1=0

∴故定点坐标是(2,1).
(2)由题意可得
mx-y=0
x+my-m-2=0
,消去m可得x2+y2-2x-y=0,方程表示圆,即M总在一个定圆上.
(3)由圆C的方程以及直线l1,l2的方程可知,直线l1恒过(0,0)点,
直线l2恒过(2,1)点,也在圆C上,
故直线l1,l2的与圆C的另一个交点P1(0,0),P2(2,1),P1P2是圆C的直径,
当且仅当圆心C(1,
1
2
)到l1的距离等于C到l2的距离时,△MP1P2面积取得最大值,
所以
|m-
1
2
|
m2+1
=
|
1
2
m+1|
m2+1
,所以m=3或m=-
1
3

所以直线l1:3x-y=0或x+3y=0.
点评:本题通过恒过定点问题来考查学生方程转化的能力及直线系的理解,曲线轨迹方程的求法,三角形的面积的最值的判断,考查计算能力,转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•铁岭模拟)(1)已知直线l1:mx+2y+1=0与直线l2:2x-4m2y-3=0垂直,求直线l1的方程;
(2)若直线l1:mx+2y+1=0被圆O:x2+y2-2x+2y-2=0所截得的线段长为2
3
,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为
5
,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l1:mx+2y+1=0与直线l2:x+2my+m2=0平行,求直线l1的方程;
(2)若直线l1:mx+2y+1=0被圆x2+y2-2x+2y-2=0所截得的线段长为2
3
,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科做)已知直线l1:mx+ny+4=0,l2:(m-1)x+y+n=0,l1经过(-1,-1),问l1∥l2是否成立?若成立,求出m,n的值,若不成立,说明理由.
(理科做)△ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y-16=0,BC边上的中线AD所在直线方程为2x-3y+1=0,求AC的长.

查看答案和解析>>

同步练习册答案