精英家教网 > 高中数学 > 题目详情
(文科做)已知直线l1:mx+ny+4=0,l2:(m-1)x+y+n=0,l1经过(-1,-1),问l1∥l2是否成立?若成立,求出m,n的值,若不成立,说明理由.
(理科做)△ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y-16=0,BC边上的中线AD所在直线方程为2x-3y+1=0,求AC的长.
分析:(文科做)把点(-1,-1)代入l1得:n-m+4=0,当n=0时,两直线不平行.所以n不等于0.由此能求出m,n的值.
(理科做)直线CE:2x+3y-16=0,则AB斜率k=
3
2
,直线AB:y-4=
3
2
(x-3).与直线AD:2x-3y+1=0交点A(1,1).设C(m,n),C在直线CE:2x+3y-16=0上,则2m+3n-16=0,由此能得到C(5,2),从而求出AC的长.
解答:解:(文科做)把点(-1,-1)代入l1得:-n-m+4=0…①,
当m=1时,n=3时,两直线不平行
当m≠1时,由l1∥l2
m-n(m-1)=0…②
联立①②解得m=n=2,
此时l1,l2重合
故不存在满足条件的m,n的值
(理科做)直线CE:2x+3y-16=0,
则AB斜率k=
3
2

直线AB:y-4=
3
2
(x-3)
3x-2y-1=0
与直线AD:2x-3y+1=0交点A(1,1).
设C(m,n),
C在直线CE:2x+3y-16=0上,
则2m+3n-16=0,
BC中点D(
3+m
2
4+n
2
)在直线AD:2x-3y+1=0上,
3+m-
3
2
(4+n)+1=0,
解方程组得C(5,2).
∴AC=
16+1
=
17
点评:本题考查两直线平行的关系和条件的应用,考查直线的交点坐标和两点间距离公式,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科做)已知直线l过点P(2,1),且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科做)已知圆O:x2+y2=4,,点M(1,a)且a>0.
(I )若过点M有且只有一条直线/与圆O相切,求a的值及直线l的斜率,
(II )若a=
2
,AC、BD是过点M的两条弦.
①当弦AC最短、弦BD最长时,求四边形ABCD的面积;
②若
OP
=
OA
+
OC
,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

(文科做)已知直线l过点P(2,1),且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(文科做)已知直线l过点P(2,1),且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:2011-2012学年青海省湟川中学高三(上)第二次月考数学试卷(解析版) 题型:选择题

(文科做)已知直线l过点P(2,1),且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案