精英家教网 > 高中数学 > 题目详情

设首项为,公比为的等比数列的前项和为,则(    )

(A)     (B)          (C)       (D)

 

【答案】

D;

【解析】解法一:由等比数列公式可知,,对照两式可知选D;

解法二:若,当时,,当时,,两式对减,得,故选D.

【考点定位】本题考查等比数列的通项公式与前n项和公式,考查学生的基本运算能力以及转化与化归能力.

 

练习册系列答案
相关习题

科目:高中数学 来源:2010年上海市卢湾区高三第二次模拟考试数学卷(文) 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.

     设数列是一个首项为、公差为的无穷等差数列.

(1)若成等比数列,求其公比

(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.

(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项.求证:当为大于1的正整数时,该数列为的无穷等比子数列.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分16分)从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.

设数列是一个首项为、公差为的无穷等差数列(即项数有无限项).

(1)若成等比数列,求其公比

(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.

(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项,试问当且仅当为何值时,该数列为的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分16分)从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.

设数列是一个首项为、公差为的无穷等差数列(即项数有无限项).

(1)若成等比数列,求其公比

(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.

(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项,试问当且仅当为何值时,该数列为的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年上海市卢湾区高考模拟考试(文) 题型:解答题

 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.

     设数列是一个首项为、公差为的无穷等差数列.

(1)若成等比数列,求其公比

(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.

(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项.求证:当为大于1的正整数时,该数列为的无穷等比子数列.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年上海市卢湾区高考模拟考试(理) 题型:解答题

 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.

     设数列是一个首项为、公差为的无穷等差数列.

(1)若成等比数列,求其公比

(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.

(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项,试问当且仅当为何值时,该数列为的无穷等比子数列,请说明理由.

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案