精英家教网 > 高中数学 > 题目详情
设f(x)=ax2+(b-8)x-a-ab,不等式f(x)>0的解集是(-3,2)。
(1)求f(x);
(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域。
解:(1)由已知方程f(x)=0的两根为-3和2(a<0),
由韦达定理得
从而
(2)
而x∈[0,1],对称轴,从而f(x)在[0,1]上为减函数,
所以,当x=0时,;当x=1时,
故所求函数f(x)的值域为[12,18]。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
ax2+bx

(1)当a=-1,b=4时,求函数f(ex)(e是自然对数的底数.)的定义域和值域;
(2)求满足下列条件的实数a的值:至少有一个正实数b,使函数f(x)的定义域和值域相同.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
ax2+bx
,求满足下列条件的实数a的值:至少有一个正实数b,使函数f(x)的定义域和值域相同.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax2+c,且-3≤f(1)≤1,-2≤f(2)≤3,求f(3)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax2+bx满足-1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围?.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax2+bx,1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.

查看答案和解析>>