精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),A为左顶点,B为短轴一顶点,F为右焦点且AB⊥BF,则这个椭圆的离心率等于______.
由题意得 A(-a,0)、B(0,b),F(c,0),
∵AB⊥BF,∴
AB
BF
=0

∴(a,b)•(c,-b)=ac-b2=ac-a2+c2=0,
∴e-1+e2=0,
解得e=
5
-1
2

故答案为:
5
-1
2

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
36
+
y2
27
=1
,过右焦点F作不垂直于x轴的弦交椭圆于A、B两点,AB的垂直平分线交x轴于N,则|NF|:|AB|等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,椭圆中心在坐标原点,点F为左焦点,点B为短轴的上顶点,点A为长轴的右顶点.当
FB
BA
时,椭圆被称为“黄金椭圆”,则“黄金椭圆”的离心率e等于(  )
A.
5
-1
2
B.
5
+1
4
C.
3
-1
2
D.
3
+1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点是F1(-c,0)、F2(c,0),M是椭圆上一点,且
F1M
F2M
=0,则离心率e的取值范围是 ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知A,B分别为椭圆
x2
a2
+
y2
b2
=1(a>b>)
的右顶点和上顶点,直线 lAB,l与x轴、y轴分别交于C,D两点,直线CE,DF为椭圆的切线,则CE与DF的斜率之积kCE•kDF等于(  )
A.±
a2
b2
B.±
a2-b2
a2
C.±
b2
a2
D.±
a2-b2
b2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

“m=3”是“椭圆
x2
4
+
y2
m
=1
焦距为2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2分别是椭圆的左,右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为(  )
A.
3
-1
B.2-
3
C.
2
2
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P为椭圆
x2
16
+
y2
9
=1上的动点,则P到直线x+y-6=0的最小距离为(  )
A.1B.2C.
2
2
D.
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线=1(a·b≠0,且a≠b)与直线x+y-1=0相交于P,Q两点,且=0(O为原点),则的值为________.

查看答案和解析>>

同步练习册答案