【题目】平行四边形ABCD中,AB=2,AD=1,
=﹣1,点M在边CD上,则
的最大值为( )
A.2
B.2
﹣1
C.5
D.
﹣1
【答案】A
【解析】解:∵平行四边形ABCD中,AB=2,AD=1,
=﹣1,点M在边CD上,
∴|
||
|cos∠A=﹣1,
∴cosA=﹣
,∴A=120°,
以A为原点,以AB所在的直线为x轴,以AB的垂线为y轴,
建立如图所示的坐标系![]()
∴A(0,0),B(2,0),D(﹣
,
),
设M(x,
),则﹣
≤x≤
,
∴
=(﹣x,﹣
),
=(2﹣x,﹣
),
∴
=x(x﹣2)+
=x2﹣2x+
=(x﹣1)2﹣
,
设f(x)=(x﹣1)2﹣
,则f(x)在[﹣
,1)上单调递减,在[1,
]上单调递增,
∴f(x)min=f(1)=﹣
,f(x)max=f(﹣
)=2,
则
的最大值是2,
故选:A.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+x2﹣xlna﹣b(b∈R,a>0且a≠1),e是自然对数的底数.
(1)讨论函数f(x)在(0,+∞)上的单调性;
(2)当a>1时,若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,求实数a的取值范围.(参考公式:(ax)′=axlna)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是首项
,公比
的等比数列.设
(n∈N*). (Ⅰ)求证:数列{bn}为等差数列;
(Ⅱ)设cn=an+b2n , 求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如下表所示),规定80分及以上者晋级成功,否则晋级失败.
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(Ⅰ)求图中a的值;
(Ⅱ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).
(参考公式:
,其中n=a+b+c+d)
P(K2≥k0) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高一、高二、高三三个年级共有300名教师,为调查他们的备课时间情况,通过分层抽样获得了20名教师一周的备课时间,数据如下表(单位:小时):
高一年级 | 7 | 7.5 | 8 | 8.5 | 9 | |||
高二年级 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
高三年级 | 6 | 6.5 | 7 | 8.5 | 11 | 13.5 | 17 | 18.5 |
(1)试估计该校高三年级的教师人数;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选出的人记为乙,假设所有教师的备课时间相对独立,求该周甲的备课时间不比乙的备课时间长的概率;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是8、9、10(单位:小时),这三个数据与表格中的数据构成的新样本的平均数记为
,表格中的数据平均数记为
,试判断
与
的大小.(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<
)的最小正周期为π,且f(﹣x)=f(x),则( )
A.f(x)在(0,
)单调递增
B.f(x)在(
,
)单调递减
C.f(x)在(
,
)单调递增
D.f(x)在(
,π)单调递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn , Sm﹣1=13,Sm=0,Sm+1=﹣15.其中m∈N*且m≥2,则数列{
}的前n项和的最大值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1和F2为双曲线
(a>0,b>0)的两个焦点,若F1 , F2 , P(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是( )
A.y=±
x
B.y=±
x
C.y=±
x
D.y=±
x
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com