精英家教网 > 高中数学 > 题目详情

【题目】某学校高一、高二、高三三个年级共有300名教师,为调查他们的备课时间情况,通过分层抽样获得了20名教师一周的备课时间,数据如下表(单位:小时):

高一年级

7

7.5

8

8.5

9

高二年级

7

8

9

10

11

12

13

高三年级

6

6.5

7

8.5

11

13.5

17

18.5


(1)试估计该校高三年级的教师人数;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选出的人记为乙,假设所有教师的备课时间相对独立,求该周甲的备课时间不比乙的备课时间长的概率;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是8、9、10(单位:小时),这三个数据与表格中的数据构成的新样本的平均数记为 ,表格中的数据平均数记为 ,试判断 的大小.(结论不要求证明)

【答案】
(1)解:抽出的20位教师中,来自高三年级的有8名,

根据分层抽样方法,高三年级的教师共有300× =120(人).


(2)解:从高一、高二年级分别抽取一人,共有35种基本结果,

其中甲该周备课时间比乙长的结果有:

(7.5,7),(8,7),(8.5,7),(8.5,8),(9,7),(9,8),共6种,

故该周甲的备课时间不比乙的备课时间长的基本结果有35﹣6=29种,

∴该周甲的备课时间不比乙的备课时间长的概率P=


(3)解:
【解析】(1)抽出的20位教师中,来自高三年级的有8名,根据分层抽样方法,能求出高三年级的教师共有多少人.(2)从高一、高二年级分别抽取一人,共有35种基本结果,利用列举法求出该周甲的备课时间不比乙的备课时间长的基本结果种数,由此能求出该周甲的备课时间不比乙的备课时间长的概率.(3)利用平均数定义能判断 的大小.
【考点精析】利用极差、方差与标准差对题目进行判断即可得到答案,需要熟知标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在高中学习过程中,同学们经常这样说:“数学物理不分家,如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了苏俄生的物理成绩与数学成绩具有线性相关关系的结论.现从该班随机抽取5名学生在一次考试中的数学和物理成绩,如表:

成绩 编号

1

2

3

4

5

物理(x)

90

85

74

68

63

数学(y)

130

125

110

95

90


(1)求数学成绩y对物理成绩x的线性回归方程 = x+ 精确到0.1).若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出2位参加一项知识竞赛,求选中的学生的数学成绩至少有一位高于120分的概率.(参考公式: = = ) (参考数据:902+852+742+682+632=29394,90××125+74×110+68×95+63×90=42595)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2﹣bx+c满足f(1+x)=f(1﹣x)且f(0)=3,则f(bx)和f(cx)的大小关系是(
A.f(bx)≤f(cx
B.f(bx)≥f(cx
C.f(bx)>f(cx
D.大小关系随x的不同而不同

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面四边形ABCD中,AB= ,BC=2,AC⊥CD,AC=CD,则四边形ABCD面积的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平行四边形ABCD中,AB=2,AD=1, =﹣1,点M在边CD上,则 的最大值为(
A.2
B.2 ﹣1
C.5
D. ﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 满足| |=| |= ,| |=1,若( )( )=0,则| |的取值范围是(
A.[1,2]
B.[2,4]
C.[ ﹣1, +1]
D.[ ﹣1, +1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得 M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x+1)2+y2=8,点A(1,0),P是圆C上任意一点,线段AP的垂直平分线交CP于点Q,当点P在圆上运动时,点Q的轨迹为曲线E.
(1)求曲线E的方程;
(2)若直线l:y=kx+m与曲线E相交于M,N两点,O为坐标原点,求△MON面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ +alnx.
(Ⅰ)若f(x)在区间[2,3]上单调递增,求实数a的取值范围;
(Ⅱ)设f(x)的导函数f′(x)的图象为曲线C,曲线C上的不同两点A(x1 , y1)、B(x2 , y2)所在直线的斜率为k,求证:当a≤4时,|k|>1.

查看答案和解析>>

同步练习册答案