精英家教网 > 高中数学 > 题目详情

【题目】如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得 M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.

【答案】150
【解析】解:在RT△ABC中,∠CAB=45°,BC=100m,所以AC=100 m. 在△AMC中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,
由正弦定理得, ,因此AM=100 m.
在RT△MNA中,AM=100 m,∠MAN=60°,由
得MN=100 × =150m.
故答案为:150.
由题意,可先求出AC的值,从而由正弦定理可求AM的值,在RT△MNA中,AM=100 m,∠MAN=60°,从而可求得MN的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an},a2=2,an+an+1=3n,n∈N* , 则a2+a4+a6+a8+a10+a12=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+4|﹣|x﹣1|.
(1)解不等式f(x)>3;
(2)若不等式f(x)+1≤4a﹣5×2a有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高一、高二、高三三个年级共有300名教师,为调查他们的备课时间情况,通过分层抽样获得了20名教师一周的备课时间,数据如下表(单位:小时):

高一年级

7

7.5

8

8.5

9

高二年级

7

8

9

10

11

12

13

高三年级

6

6.5

7

8.5

11

13.5

17

18.5


(1)试估计该校高三年级的教师人数;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选出的人记为乙,假设所有教师的备课时间相对独立,求该周甲的备课时间不比乙的备课时间长的概率;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是8、9、10(单位:小时),这三个数据与表格中的数据构成的新样本的平均数记为 ,表格中的数据平均数记为 ,试判断 的大小.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期为π,且f(﹣x)=f(x),则(
A.f(x)在(0, )单调递增
B.f(x)在( )单调递减
C.f(x)在( )单调递增
D.f(x)在( ,π)单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=eax(a≠0).
(1)当 时,令 (x>0),求函数g(x)在[m,m+1](m>0)上的最小值;
(2)若对于一切x∈R,f(x)﹣x﹣1≥0恒成立,求a的取值集合;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , Sm1=13,Sm=0,Sm+1=﹣15.其中m∈N*且m≥2,则数列{ }的前n项和的最大值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦距为2 的椭圆C: + =1(a>b>0)的右顶点为A,直线y= 与椭圆C交于P、Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形.
(1)求椭圆C的方程;
(2)斜率为k的直线l与椭圆C交于两个不同的点M,N.
(i)若直线l过原点且与坐标轴不重合,E是直线3x+3y﹣2=0上一点,且△EMN是以E为直角顶点的等腰直角三角形,求k的值
(ii)若M是椭圆的左顶点,D是直线MN上一点,且DA⊥AM,点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sinxcosx﹣3sin2x﹣cos2x+3.
(1)当x∈[0, ]时,求f(x)的值域;
(2)若△ABC的内角A,B,C的对边分别为a,b,c,且满足 = =2+2cos(A+C),求f(B)的值.

查看答案和解析>>

同步练习册答案