精英家教网 > 高中数学 > 题目详情

数学公式,B={x|x>a},若A⊆B,则实数a的取值范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    a≤1
  4. D.
    a<1
D
分析:根据题意A集合中的元素是在区间(,5)内的整数,再利用A⊆B,求出a符合的条件即可.
解答:∵A={x|<x<5,x∈Z},∴A={1,2,3,4}
∵A⊆B,∴a<1
故选D
点评:本题考查集合中参数的取值问题.正确理解集合语言是解决此类题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市临海市杜桥中学高三(下)3月月考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省重点中学协作体高三第一次联考数学试卷(理科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011年广东省高考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步练习册答案