精英家教网 > 高中数学 > 题目详情
设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是
 
分析:由题意可得x1,x2是 方程3x2-4ax+a2=0的两个实数根,故有3×22-4a×2+a2<0,由此求得a的范围.
解答:解:∵x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,
∴x1,x2是 方程3x2-4ax+a2=0的两个实数根,
∴3×22-4a×2+a2<0,即 a2-8a+12=(a-2)(a-6)<0,
解得 2<a<6,
故答案为:(2,6).
点评:本题主要考查函数的零点的定义,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x1,x2是函数f(x)=
a
3
x3+
b
2
x2-a2x(a>0)
的两个极值点,且|x1|+|x2|=2.
(1)证明:|b|≤
4
3
9

(2)若g(x)=f'(x)-2a(x-x1),证明当x1<x<2时,且x1<0时,|g(x)|≤4a.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是函数f(x)=
a
3
x3+
b
2
x2-a2x(a>0)的两个极值点,且|x1|+|x2|=2.
(1)求a的取值范围;
(2)求证:|b|≤
4
3
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+bx+c,且f(1)=-
12

(1)求证:函数f(x)有两个零点.
(2)设x1、x2是函数f(x)的两个零点,求|x1-x2|的取值范围.
(3)求证:函数f(x)在区间(0,2)内至少有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c,且f(1)=-
a
2
,3a>2c>2b

(1)求证:a>0且-3<
b
a
<-
3
4

(2)求证:函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,求|x1-x2|的范围.

查看答案和解析>>

同步练习册答案