精英家教网 > 高中数学 > 题目详情

若直线与直线关于点(2,1)对称,则直线恒过定点              (    )

       A.(0,4)           B.()        C.(0, 2)           D.

练习册系列答案
相关习题

科目:高中数学 来源:2010年广东省高一下学期期末考试理科数学卷 题型:解答题

(14分)已知圆过点且与圆M:关于直线对称

  (1)判断圆与圆M的位置关系,并说明理由;

  (2)过点作两条相异直线分别与圆相交于

   ①若直线与直线互相垂直,求的最大值;

   ②若直线与直线轴分别交于,且,为坐标原点,试判断直线是否平行?请说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年海淀区二模理)若直线与直线关于点对称,则直线恒过定点         (     )

(A)        (B)        (C)           (D) 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线与直线关于点对称,则直线恒过定点(   )

A.(0,4)            B.(0,2)            C.(-2,4)   D.(4,-2)

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(课标卷解析版) 题型:解答题

设抛物线>0)的焦点为,准线为上一点,已知以为圆心,为半径的圆,两点.

(Ⅰ)若,的面积为,求的值及圆的方程;

 (Ⅱ)若三点在同一条直线上,直线平行,且只有一个公共点,求坐标原点到距离的比值.

【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

【解析】设准线轴的焦点为E,圆F的半径为

则|FE|==,E是BD的中点,

(Ⅰ) ∵,∴=,|BD|=

设A(),根据抛物线定义得,|FA|=

的面积为,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圆F的方程为:

(Ⅱ) 解析1∵三点在同一条直线上, ∴是圆的直径,,

由抛物线定义知,∴,∴的斜率为或-

∴直线的方程为:,∴原点到直线的距离=

设直线的方程为:,代入得,

只有一个公共点, ∴=,∴

∴直线的方程为:,∴原点到直线的距离=

∴坐标原点到距离的比值为3.

解析2由对称性设,则

      点关于点对称得:

     得:,直线

     切点

     直线

坐标原点到距离的比值为

 

查看答案和解析>>

同步练习册答案