£¨1£©ÓÉ¡°Èôa£¬b£¬c¡ÊRÔò£¨ab£©c=a£¨bc£©¡±Àà±È¡°Èôa£¬b£¬cΪÈý¸öÏòÁ¿Ôò•c=a•¡±
£¨2£©ÔÚÊýÁÐ{an} ÖУ¬a1=0£¬an+1=2an+2²ÂÏëan=2n-2
£¨3£©ÔÚƽÃæÄÚ¡°Èý½ÇÐεÄÁ½±ßÖ®ºÍ´óÓÚµÚÈý±ß¡±Àà±ÈÔÚ¿Õ¼äÖС°ËÄÃæÌåµÄÈÎÒâÈý¸öÃæµÄÃæ»ýÖ®ºÍ´óÓÚµÚËĸöÃæµÄÃæ»ý¡±
£¨4£©ÈôM £¨-2£¬0£©£¬N £¨2£¬0£©£¬ÔòÒÔMNΪб±ßµÄÖ±½ÇÈý½ÇÐÎÖ±½Ç¶¥µãPµÄ¹ì¼£·½³ÌÊÇx2+y2=4
ÉÏÊöËĸöÍÆÀíÖУ¬µÃ³öµÄ½áÂÛÕýÈ·µÄÊÇ £¨Ð´³öËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©
¡¾´ð°¸¡¿
·ÖÎö£ºÏòÁ¿²»·ûºÏ³Ë·¨½áºÏÂÉ£¬Í¨¹ýÅä´Õ×ö³öÊýÁеÄͨÏËÄÃæÌåµÄÈÎÒâÈý¸öÃæµÄÃæ»ýÖ®ºÍ´óÓÚµÚËÄÃæµÄÃæ»ý£¬µ±¸øx¸³Öµ1ʱ£¬¿ÉÒԵõ½¸÷ÏîµÄϵÊýÖ®ºÍ£¬µ«ÊDz»Í¬µÄ·ûºÅ²»ÕýÈ·£®
½â´ð£º½â£º¡ßÏòÁ¿²»·ûºÏ³Ë·¨½áºÏÂÉ£¬
Éè
Óë
µÄ¼Ð½ÇΪA£¬
Óë
µÄ¼Ð½ÇΪB£¬Ôò
£¨
£©
±íʾÓë
ƽÐеÄÏòÁ¿£¬
•£¨
•
£©±íʾÓë
ƽÐеÄÏòÁ¿£¬
¡ß
Óë
²»Ò»¶¨Æ½ÐУ¬
¡à
²»Ò»¶¨³ÉÁ¢£¬
¹Ê£¨1£©²»ÕýÈ·£¬
¡ßa
n+1=2a
n+2£¬
¡à2+a
n+1=2£¨a
n+2£©£¬
¡à{a
n+2}ÊÇÒ»¸öµÈ±ÈÊýÁУ¬
¡àa
n=2
n-2£¬¹Ê£¨2£©ÕýÈ·£¬
¸ù¾ÝÔÚƽÃæÄÚ¡°Èý½ÇÐεÄÁ½±ßÖ®ºÍ´óÓÚµÚÈý±ß¡±Àà±ÈÔÚ¿Õ¼äÖÐ
¡°ËÄÃæÌåµÄÈÎÒâÈý¸öÃæµÄÃæ»ýÖ®ºÍ´óÓÚµÚËÄÃæµÄÃæ»ý£¬£¨3£©ÕýÈ·£®
µ±¸øx¸³Öµ1ʱ£¬¿ÉÒԵõ½¸÷ÏîµÄϵÊýÖ®ºÍ£¬µ«ÊDz»Í¬µÄ·ûºÅ²»ÕýÈ·£¬¹Ê£¨4£©²»ÕýÈ·£¬
¹Ê´ð°¸Îª£º£¨2£©£¨3£©£®
µãÆÀ£º±¾Ì⿼²éÀà±ÈÍÆÀíºÍ¹éÄÉÍÆÀí£¬±¾Ìâ½âÌâµÄ¹Ø¼üÊÇÕýÈ·Àí½âÀà±ÈºÍ¹éÄɵĺ¬Ò壬עÒâ±¾ÌâËù°üº¬µÄËĸöÃüÌⶼҪÕýÈ·½â³ö²ÅÄÜ×ö¶Ô±¾Ì⣮