精英家教网 > 高中数学 > 题目详情
,设f(x)是定义在R上的以3为周期的奇函数,且f(2)=0,则.
(i)f(
32
)=
 

(ii)设S为f(x)=0在区间[0,20]内的所有根之和,则S的最小值为
 
分析:(i)利用奇函数定义和周期函数性质解之;
(ii)通过求f(x)一个周期内使f(x)=0的所有根,进而求出[0,20]内的所有根之和.
解答:解:(i)因为f(x)是R上的以3为周期的奇函数,
所以f(-x)=-f(x),f(x+3)=f(x),
则f(-
3
2
)=-f(
3
2
)且f(-
3
2
)=f(-
3
2
+3)=f(
3
2
),
所以-f(
3
2
)=f(
3
2
),
解得f(
3
2
)=0.
(ii)因为f(x)R上以3为周期的奇函数且f(2)=0,
所以f(1)=-f(-1)=-f(-1+3)=-f(2)=0
所以在x∈[0,3]一个周期内至少有f(0)=0,f(1)=0,f(
3
2
)=0,f(2)=0,f(3)=0,
所以在区间[0,20]内f(x)=0至少有根0,1,
3
2
,2,3,4,
9
2
,5,6,…,17,18,19,
39
2
,20.
所以Smin=
20(1+20)
2
+
7(
3
2
+
39
2
)
2
=283.5
点评:本题主要考查函数的周期性和奇偶性,同时考查等差数列求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
12
对称,则f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

例2.设f(x)是定义在[-3,
2
]上的函数,求下列函数的定义域(1)y=f(
x
-2)
(2)y=f(
x
a
)(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而当x∈[2,3]时,g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f(2013)+f(2014)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
34
,2)
34
,2)

查看答案和解析>>

同步练习册答案