精英家教网 > 高中数学 > 题目详情
已知点A,B的坐标分别为(-2,0),(2,0).直线AP,BP相交于点P,且它们的斜率之积是-
1
4
,记动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)设Q是曲线C上的动点,直线AQ,BQ分别交直线l:x=4于点M,N,线段MN的中点为D,求直线QB与直线BD的斜率之积的取值范围;
(3)在(2)的条件下,记直线BM与AN的交点为T,试探究点T与曲线C的位置关系,并说明理由.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)设出点P的坐标,表示出直线AM、BM的斜率,求出它们的斜率之积,利用斜率之积是-
1
4
,建立方程,去掉不满足条件的点,即可得到点M的轨迹方程;
(2)直线AQ的方程为y=k(x+2),令x=4,则得M的坐标,直线BQ的方程为y=-
1
4k
(x-2),令x=4,则得N的坐标,可得D的坐标,求直线QB与直线BD的斜率之积,即可求出其取值范围;
(3)由(2)得,M(4,6k),N(4,-
1
2k
),利用直线BM与AN的斜率之积是-
1
4
,可得结论.
解答: 解:(1)设P(x,y),因为A(-2,0),B(2,0)
∴由已知,
y
x+2
y
x-2
=-
1
4
(x≠±2)
化简,得
x2
4
+y2=1
(x≠±2).…(4分)
(2)设直线AQ的斜率为k(k≠0),则由题可得直线BQ的斜率为-
1
4k

∴直线AQ的方程为y=k(x+2),令x=4,则得M(4,6k),
直线BQ的方程为y=-
1
4k
(x-2),令x=4,则得N(4,-
1
2k
),
∴D(4,3k-
1
4k
),
∴kBD=
3k-
1
4k
4-2
=
3k
2
-
1
8k
…(8分)
故kBDkQB=(
3k
2
-
1
8k
)×(-
1
4k
)=-
3
8
+
1
32k2
>-
3
8

∴直线QB与直线BD的斜率之积的取值范围为(-
3
8
,+∞)…(10分)
(3)由(2)得,M(4,6k),N(4,-
1
2k
),
∴kBM•kAN=
6k-0
4-2
-
1
2k
-0
4+2
=-
1
4
…(12分)
∴点T在曲线C上.…(14分)
点评:本题重点考查轨迹方程的求解,解题的关键是正确表示出直线AM、BM的斜率,利用条件建立方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A1(0,
2
),B1
6
,0),M(2,1),直线l:x=
4
3
6
,若曲线C上的动点P到点B1的距离等于P到直线l的距离的a倍且曲线C过点A1
(Ⅰ)求曲线C的方程;
(Ⅱ)设平行于OM(O为坐标原点)的直线l1在y轴上的截距为m(m≠0),且l1交曲线C于两点A、B.
(ⅰ)求证:直线MA、MB与x轴始终围成一个等腰三角形;
(ⅱ)若点A、B均位于y轴的右侧,求直线MA的斜率k1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁.私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
频数 5 10 15 10 5 5
赞成人数 4 6 9 6 3 4
(Ⅰ)完成被调查人员的频率分布直方图;

(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为零的等差数列{an},等比数列{bn},满足b1=a1+1=2,b2=a2+1,b3=a4+1.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)若cn=an•bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线:y=x+b和圆x2+y2+2x-2y+1=0.
(1)若直线和圆相切,求直线的方程;
(2)若b=1,求直线和圆相交的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆x2+2y2=a2(a>0)的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆C的方程;
(2)已知直线y=k(x-1)与椭圆C交于A、B两点,试问,是否存在x轴上的点M(m,0),使得对任意的k∈R,
MA
MB
为定值,若存在,求出M点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-2x+2m=0},若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
2
2
,过右焦点F且与x轴垂直的直线交椭圆于A,B两点,且|AB|=
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+t(t≠0)与椭圆C相交于M,N两点,直线AO平分线段MN,求△OMN的面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-x2+x+1在点(1,2)处的切线与函数g(x)=x2-x围成的图形的面积等于
 

查看答案和解析>>

同步练习册答案