分析 (1)由题意利用等腰梯形、圆、勾股定理列出方程,能求出它的腰长.
(2)由腰长得$2a=\frac{{4-{x^2}}}{2}$,由此能求出求出这个梯形的周长y关于腰长x的函数解析式,并指出它的定义域.
(3)由二次函数性质能求出结果.
解答 解:(1)∵22-a2=x2-(2-a)2![]()
∴x2=8-4a,
∴它的腰长$x=\sqrt{8-4a}$…(4分)
(2)由(1)知:$2a=\frac{{4-{x^2}}}{2}$,
∴$y=2x+\frac{{4-{x^2}}}{2}+4=-\frac{1}{2}{x^2}+x+6$,
∵$a>0∴x<2\sqrt{2}$,∴定义域为$(0,2\sqrt{2})$…(8分)
(3)由(2)知,x=1时,y最大
此时梯形的上底$2a=\frac{7}{2}$,高$h=\frac{{\sqrt{15}}}{4}$,
∴$S=\frac{1}{2}(\frac{7}{2}+4)•\frac{{\sqrt{15}}}{4}=\frac{{15\sqrt{15}}}{16}$.
点评 本题考查函数在生产生活中的实际应用,是中档题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | l∥α | B. | l⊥α | C. | l?α | D. | A、C都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{16}{23}$ | B. | $-\frac{23}{16}$ | C. | $\frac{16}{23}$ | D. | $\frac{23}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com