精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2cos2x+sin(2x-$\frac{π}{6}$)
(1)求函数f(x)的单调增区间;最大值,以及取得最大值时x的取值集合;
(2)已知△ABC中,角A、B、C的对边分别为a,b,c,若f(A)=$\frac{3}{2}$,b+c=2,求实数a的取值范围.

分析 (1)化简可得解析式f(x)=sin(2x+$\frac{π}{6}$)+1,从而可求函数f(x)的单调增区间;函数f(x)的最大值,并写出f(x)取最大值时x的取值集合;
(2)由题意,f(A)=sin(2A+$\frac{π}{6}$)+1=$\frac{3}{2}$,化简可求得A的值,在△ABC中,根据余弦定理,由b+c=2,知bc≤1,即a2≥1.又由b+c>a得a<2,即可求实数a的取值范围.

解答 解:(1)f(x)=2cos2x+sin(2x-$\frac{π}{6}$)=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+1=sin(2x+$\frac{π}{6}$)+1,
2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,可得函数f(x)的单调增区间[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z),
函数f(x)的最大值为2.
当且仅当sin(2x+$\frac{π}{6}$)=1,即2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,即x=kπ+$\frac{π}{6}$(k∈Z)时取到.
所以函数最大值为2时x的取值集合为{x|x=kπ+$\frac{π}{6}$,k∈Z}.…(6分)
(2)由题意,f(A)=sin(2A+$\frac{π}{6}$)+1=$\frac{3}{2}$,化简得sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$.
∵A∈(0,π),∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,
∴A=$\frac{π}{3}$.
在△ABC中,根据余弦定理,得a2=b2+c2-bc=(b+c)2-3bc.
由b+c=2,知bc≤1,即a2≥1.
∴当b=c=1时,取等号.
又由b+c>a得a<2.
所以a的取值范围是[1,2 ).…(12分)

点评 本题主要考查三角函数中的恒等变换应用,余弦定理的应用,不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知三棱锥A-BCD的四个顶点A、B、C、D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=$\sqrt{3}$,BC=2,CD=$\sqrt{5}$,则球O的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.今年“五一”期间,某公园举行免费游园活动,免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来…按照这种规律进行下去,到上午11时公园内的人数是(  )
A.212-57B.211-47C.210-38D.29-30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量结果得到如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(1)在图中作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均数、中位数(保留2位小数);
(3)根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的定义域为R,导函数f'(x)的图象如图所示,则函数f(x)(  )
A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点
C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为$\left\{\begin{array}{l}{x=tsinφ}\\{y=1+tcosφ}\end{array}\right.$(t为参数,0<φ<π,曲线C的极坐标方程为ρcos2θ=4sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:
(1)$\frac{si{n}^{2}35°-\frac{1}{2}}{cos10°cos80°}$        
(2)($\frac{1}{tan\frac{α}{2}}$-tan$\frac{α}{2}$)•$\frac{1-cos2α}{sin2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是半圆的直径,上底CD的端点在半圆上.
(1)若这个梯形上底为CD=2a,求它的腰长x;
(2)求出这个梯形的周长y关于腰长x的函数解析式,并指出它的定义域;
(3)求这个梯形周长的最大值,并求出当它最大时,梯形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈[0,2π],sinx≤1,则(  )
A.¬p:?x∈[0,2π],sinx≥1B.¬p:?x∈[-2π,0],sinx>1
C.¬p:?x∈[0,2π],sinx>1D.¬p:?x∈[-2π,0],sinx>1

查看答案和解析>>

同步练习册答案