精英家教网 > 高中数学 > 题目详情
14.在△ABC中,b=2,B=30°,c=2$\sqrt{3}$,求a和A,C.

分析 先根据正弦定理求出角C,再分类讨论,求出A和a即可.

解答 解:由正弦定理可得sinC=$\frac{csinB}{b}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵0<C<150°,
∴C=60°或120°,
当C=60°时,A=90°,此时a=2b=4,
当C=120°时,A=30°,此时a=b=2

点评 本题考查了正弦定理和解三角形的有关知识,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且圆M:x2+y2-$\frac{3}{2}$x-1=0过椭圆C的上、下、右三个顶点.
(Ⅰ)求椭圆C的标准方程和离心率;
(Ⅱ)将椭圆C的横坐标变为原来的$\frac{\sqrt{2}}{2}$倍,纵坐标不变.得到椭圆C′的方程,已知直线l与椭圆C′只有1个交点,探究.是否存在两个定点P(x1,0)、Q(x2,0),且x1<x2,使得P,Q到直线l的距离之积为1,如果存在,求出这两个定点的坐标,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的导函数.
(1)y=x3+2sinx-3cosx
(2)y=sin(2x-5)+ln(3x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设M是椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上的一点,F1,F2为焦点,且$∠{F_1}M{F_2}=\frac{π}{3}$,则△MF1F2的面积为(  )
A.3B.$16(2+\sqrt{3})$C.$16(2-\sqrt{3})$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,$A=\frac{π}{3}$、$BC=3,AB=\sqrt{6}$,则角C等于(  )
A.$\frac{π}{4}或\frac{3π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.参数方程$\left\{\begin{array}{l}x=4cosθ\\ y=3sinθ\end{array}$(θ为参数)表示的曲线是(  )
A.以$({±\sqrt{7},0})$为焦点的椭圆B.以(±4,0)为焦点的椭圆
C.离心率为$\frac{{\sqrt{7}}}{5}$的椭圆D.离心率为$\frac{3}{5}$的椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知|$\overrightarrow{a}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{1}{2}$.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足:a1=a,an+1=$\frac{2{a}_{n}}{{a}_{n}^{2}+1}$(a>0且a≠1,n∈N*).
(1)证明:当n≥2时,an<an+1<1;
(2)若b∈(a2,1),求证:当整数k≥$\frac{(b-{a}_{2})(b+1)}{{a}_{2}(1-b)}$+1时,ak+1>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cosβ,sinβ)$,0<β<α<π.
(1)若$|\overrightarrow a-\overrightarrow b|=\sqrt{2}$,求$\overrightarrow a,\overrightarrow b$的夹角θ的值;
(2)设$\overrightarrow c=(0,1)$,若$\overrightarrow a+\overrightarrow b=\overrightarrow c$,求α,β的值.

查看答案和解析>>

同步练习册答案