精英家教网 > 高中数学 > 题目详情
4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且圆M:x2+y2-$\frac{3}{2}$x-1=0过椭圆C的上、下、右三个顶点.
(Ⅰ)求椭圆C的标准方程和离心率;
(Ⅱ)将椭圆C的横坐标变为原来的$\frac{\sqrt{2}}{2}$倍,纵坐标不变.得到椭圆C′的方程,已知直线l与椭圆C′只有1个交点,探究.是否存在两个定点P(x1,0)、Q(x2,0),且x1<x2,使得P,Q到直线l的距离之积为1,如果存在,求出这两个定点的坐标,如果不存在,说明理由.

分析 (Ⅰ)由圆的方程,求得与x和y轴的交点坐标,即可求得a和b的值,求得椭圆方程;
(Ⅱ)由(Ⅰ)即可求得椭圆方程,分类讨论,利用直线l与椭圆C有只有一个公共点,确定k,p的关系,设在x轴上存在两点(s,0),(t,0),使其到直线l的距离之积为1,建立方程,即可求得结论.

解答 解:(Ⅰ)由圆M:x2+y2-$\frac{3}{2}$x-1=0,当x=0时,y=±1,
当y=0,x=2或x=-$\frac{1}{2}$,
由椭圆的焦点在x轴上,则椭圆的右顶点(2,0),上顶点(1,0),下顶点(-1,0),
则a=2,b=1,c=$\sqrt{3}$
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+{y}^{2}=1$,离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$;
(Ⅱ)椭圆C的横坐标变为原来的$\frac{\sqrt{2}}{2}$倍,则a=$\frac{\sqrt{2}}{2}$×2=$\sqrt{2}$,
则椭圆的标准方程:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
①当直线l斜率存在时,设直线l方程为y=kx+p,
代入椭圆方程得(1+2k2)x2+4kpx+2p2-2=0.
因为直线l与椭圆C有只有一个公共点,
所以△=16k2p2-4(1+2k2)(2p2-2)=8(1+2k2-p2)=0,
即1+2k2=p2
设在x轴上存在两点(s,0),(t,0),使其到直线l的距离之积为1,
则$\frac{丨ks+p丨}{\sqrt{1+{k}^{2}}}$•$\frac{丨kt+p丨}{\sqrt{1+{k}^{2}}}$=1,
即(st+1)k+p(s+t)=0(*),或(st+3)k2+(s+t)kp+2=0 (**).
由(*)恒成立,得$\left\{\begin{array}{l}{st+1=0}\\{s+t=0}\end{array}\right.$得$\left\{\begin{array}{l}{s=1}\\{t=-1}\end{array}\right.$,或$\left\{\begin{array}{l}{s=-1}\\{t=1}\end{array}\right.$,
而(**)不恒成立.
②当直线l斜率不存在时,直线方程为x=±$\sqrt{2}$时,
定点P(-1,0)、Q(1,0)到直线l的距离之积d1?d2=($\sqrt{2}$-1)($\sqrt{2}$+1)=1.
综上,存在两个定点(1,0),(-1,0),使其到直线l 的距离之积为定值1.

点评 本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查存在性问题的研究,考查学生的计算能力,同时考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3-x+1的图象在点(1,f(1))处的切线过点(2,3).
(1)求a的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=e-x+ax,x∈R有两个零点,则实数a的取值范围为(  )
A.1<a<eB.a>eC.-e<a<-1D.a<-e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将点的直角坐标($\frac{π}{2}$,-$\frac{\sqrt{3}π}{2}$)化为极坐标(ρ>0,θ∈[0,2π))为($π,\frac{5π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=2.4$,$\widehata=\overline y-\widehatb\overline x$,据此模型预测广告费用为9万元时,销售轿车台数为(  )
广告费用x(万元)23456
销售轿车y(台数)3461012
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P是ABC所在平面内一点,$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\frac{3}{5}$$\overrightarrow{PA}$=$\overrightarrow{0}$,现将一粒黄豆随机撒在ABC内,则黄豆落在PBC内的概率是(  )
A.$\frac{3}{13}$B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{10}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列n∈N*满足bn+1=$\frac{1}{2}{b_n}+\frac{1}{4},{b_1}=\frac{7}{2},{T_n}$为{bn}的前n项和.如果对于任意n∈N*,不等式$\frac{12k}{{12+n-2{T_n}}}$≥2n-7恒成立,则实数k的取值范围为[$\frac{3}{32}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将f(x)=cosωx(ω>0),的图象向右平移$\frac{π}{3}$个单位长度,得到函数y=g(x)的图象.若y=g(x)是奇函数,则ω的最小值为(  )
A.6B.$\frac{9}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,b=2,B=30°,c=2$\sqrt{3}$,求a和A,C.

查看答案和解析>>

同步练习册答案