精英家教网 > 高中数学 > 题目详情
4.若函数f(x)=e-x+ax,x∈R有两个零点,则实数a的取值范围为(  )
A.1<a<eB.a>eC.-e<a<-1D.a<-e

分析 作出y=e-x与y=-ax的图象,根据函数图象的交点个数和导数的几何意义判断a的范围.

解答 解:令f(x)=0得e-x=-ax,
∵f(x)有两个零点,∴y=e-x与y=-ax的图象有两个交点,
作出y=e-x与y=-ax的图象,如图所示:

若直线y=-ax与y=e-x相切,设切点坐标为(x0,y0),
则有$\left\{\begin{array}{l}{{y}_{0}=-a{x}_{0}}\\{{y}_{0}={e}^{-{x}_{0}}}\\{-a=-{e}^{-{x}_{0}}}\end{array}\right.$,解得x0=-1,y0=e,a=e,
∴当-a<-e即a>e时,直线y=-ax与y=e-x的图象有两个交点.
故选B.

点评 本题考查了函数零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.将函数y=sin2x的图象向右平移$\frac{π}{6}$个单位,得到函数y=f(x)的图象,则f(x)=(  )
A.$cos(2x-\frac{π}{6})$B.$sin(2x-\frac{π}{6})$C.$cos(2x-\frac{π}{3})$D.$sin(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在正方体ABCD-A′B′C′D′中,棱AB,BB′,B′C′,C′D′的中点分别是E,F,G,H,如图所示.
(1)求证:AD′∥平面EFG;
(2)求证:A′C⊥平面EFG.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\frac{1}{(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i)^{4}}$等于(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数$f(x)={cos^2}(x-\frac{π}{12})+{sin^2}(x+\frac{π}{12})-1$是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的通项公式是${a_n}=\frac{1}{{{{(n+1)}^2}}}$,(n∈N*),记bn=(1-a1)(1-a2)…(1-an
(1)写出数列{bn}的前三项;
(2)猜想数列{bn}通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c>0,求证$\frac{{{a^2}{b^2}+{b^2}{c^2}+{a^2}{c^2}}}{a+b+c}≥abc$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且圆M:x2+y2-$\frac{3}{2}$x-1=0过椭圆C的上、下、右三个顶点.
(Ⅰ)求椭圆C的标准方程和离心率;
(Ⅱ)将椭圆C的横坐标变为原来的$\frac{\sqrt{2}}{2}$倍,纵坐标不变.得到椭圆C′的方程,已知直线l与椭圆C′只有1个交点,探究.是否存在两个定点P(x1,0)、Q(x2,0),且x1<x2,使得P,Q到直线l的距离之积为1,如果存在,求出这两个定点的坐标,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的导函数.
(1)y=x3+2sinx-3cosx
(2)y=sin(2x-5)+ln(3x-1)

查看答案和解析>>

同步练习册答案